1
|
Liang X, Jiang S, Su P, Yin C, Jiang W, Gao J, Liu Z, Li Y, Wang W, Qian A, Tian Y. Angelicae dahuricae radix alleviates simulated microgravity induced bone loss by promoting osteoblast differentiation. NPJ Microgravity 2024; 10:91. [PMID: 39353918 PMCID: PMC11445575 DOI: 10.1038/s41526-024-00433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2024] [Indexed: 10/03/2024] Open
Abstract
Bone loss caused by long-duration spaceflight seriously affects the skeletal health of astronauts. There are many shortcomings in currently available treatments for weightlessness-induced bone loss. The aim of this study was to evaluate the preventive effect of Angelica dahuricae Radix (AR) on simulated microgravity-induced bone loss. Here, we established a hind limb unloading (HLU) mouse model and treated HLU mice with AR (2 g/kg) for 4 weeks. Results indicated that AR significantly inhibited simulated microgravity-induced bone loss. In addition, the components in AR were analyzed using UPLC-MS/MS; results showed that a total of 224 compounds were detected in AR, which mainly contained 7 classes of components. Moreover, the network pharmacological predictions suggested that active ingredients of AR might act on PTGS2 to prevent bone loss. These results elucidate the efficacy of AR in preventing microgravity-induced bone loss and its potential for use in protecting the bone health of astronauts.
Collapse
Affiliation(s)
- Xuechao Liang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Peihong Su
- Shaanxi Provincial Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Chong Yin
- Department of Clinical Laboratory, Academician (expert) workstation, Lab of epigenetics and RNA therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, P. R. China
| | - Wei Jiang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Junhong Gao
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Zhiyong Liu
- Toxicology Research Center, Institute for Hygiene of Ordnance Industry, Xi'an, Shaanxi, 710065, China
| | - Yuhang Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Weisi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, P. R. China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
2
|
Gustin P, Prasad A. EnduroBone: A 3D printed bioreactor for extended bone tissue culture. HARDWAREX 2024; 18:e00535. [PMID: 38690152 PMCID: PMC11059325 DOI: 10.1016/j.ohx.2024.e00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
Studies of the effects of external stimuli on bone tissue, disease transmission mechanisms, and potential medication discoveries benefit from long-term tissue viability ex vivo. By simulating the in-vivo environment, bioreactors are essential for studying bone cellular activity throughout biological processes. We present the development of an automated 3D-printed bioreactor EnduroBone designed to sustain the ex-vivo viability of 10 mm diameter cancellous bone cores for an extended period. The device is supplied with two critical parameters for maintaining bone tissue viability: closed-loop continuous flow perfusion of 1 mL/min for nutrient diffusion and waste removal and direct mechanical stimulation with cyclic compression at 13.2 RPM (revolutions per minute) to promote cell viability which can lead to improved tissue stability during ex vivo culturing. The bioreactor addresses several limitations of existing systems and provides a versatile open-source platform for bone cancer research, orthopedic device testing, and other related applications. To validate the bioreactor, fresh swine samples were cultured ex-vivo, and their cell viability was determined to be maintained for up to 28 days. Periodic cell viability assessment through live/dead cell staining and confocal imaging at the start (0 days) and at several time points throughout the culture period (7, 14, 21, and 28 days) was used to demonstrate EnduroBone effectiveness in sustaining bone cell health for the extended period tested.
Collapse
Affiliation(s)
- Paula Gustin
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Anamika Prasad
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
- Biologcial Science Institute, Florida International University, Miami, FL, United States
| |
Collapse
|
3
|
Zhu Y, Li Y, Cao Z, Xue J, Wang X, Hu T, Han B, Guo Y. Mechanically strained osteocyte-derived exosomes contained miR-3110-5p and miR-3058-3p and promoted osteoblastic differentiation. Biomed Eng Online 2024; 23:44. [PMID: 38705993 PMCID: PMC11070085 DOI: 10.1186/s12938-024-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Osteocytes are critical mechanosensory cells in bone, and mechanically stimulated osteocytes produce exosomes that can induce osteogenesis. MicroRNAs (miRNAs) are important constituents of exosomes, and some miRNAs in osteocytes regulate osteogenic differentiation; previous studies have indicated that some differentially expressed miRNAs in mechanically strained osteocytes likely influence osteoblastic differentiation. Therefore, screening and selection of miRNAs that regulate osteogenic differentiation in exosomes of mechanically stimulated osteocytes are important. RESULTS A mechanical tensile strain of 2500 με at 0.5 Hz 1 h per day for 3 days, elevated prostaglandin E2 (PGE2) and insulin-like growth factor-1 (IGF-1) levels and nitric oxide synthase (NOS) activity of MLO-Y4 osteocytes, and promoted osteogenic differentiation of MC3T3-E1 osteoblasts. Fourteen miRNAs differentially expressed only in MLO-Y4 osteocytes which were stimulated with mechanical tensile strain, were screened, and the miRNAs related to osteogenesis were identified. Four differentially expressed miRNAs (miR-1930-3p, miR-3110-5p, miR-3090-3p, and miR-3058-3p) were found only in mechanically strained osteocytes, and the four miRNAs, eight targeted mRNAs which were differentially expressed only in mechanically strained osteoblasts, were also identified. In addition, the mechanically strained osteocyte-derived exosomes promoted the osteoblastic differentiation of MC3T3-E1 cells in vitro, the exosomes were internalized by osteoblasts, and the up-regulated miR-3110-5p and miR-3058-3p in mechanically strained osteocytes, were both increased in the exosomes, which was verified via reverse transcription quantitative polymerase chain reaction (RT-qPCR). CONCLUSIONS In osteocytes, a mechanical tensile strain of 2500 με at 0.5 Hz induced the fourteen differentially expressed miRNAs which probably were in exosomes of osteocytes and involved in osteogenesis. The mechanically strained osteocyte-derived exosomes which contained increased miR-3110-5p and miR-3058-3p (two of the 14 miRNAs), promoted osteoblastic differentiation.
Collapse
Affiliation(s)
- Yingwen Zhu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Yanan Li
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Zhen Cao
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Jindong Xue
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Xiaoyan Wang
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Tingting Hu
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China
| | - Biao Han
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
| | - Yong Guo
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), No. 1 Zhiyuan Road, Lingui District, Guilin, 541199, Guangxi, People's Republic of China.
| |
Collapse
|
4
|
Mohseni M, Vahidi B, Azizi H. Computational simulation of applying mechanical vibration to mesenchymal stem cell for mechanical modulation toward bone tissue engineering. Proc Inst Mech Eng H 2023; 237:1377-1389. [PMID: 37982187 DOI: 10.1177/09544119231208223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Evaluation of cell response to mechanical stimuli at in vitro conditions is known as one of the important issues for modulating cell behavior. Mechanical stimuli, including mechanical vibration and oscillatory fluid flow, act as important biophysical signals for the mechanical modulation of stem cells. In the present study, mesenchymal stem cell (MSC) consists of cytoplasm, nucleus, actin, and microtubule. Also, integrin and primary cilium were considered as mechanoreceptors. In this study, the combined effect of vibration and oscillatory fluid flow on the cell and its components were investigated using numerical modeling. The results of the FEM and FSI model showed that the cell response (stress and strain values) at the frequency of 30 H z mechanical vibration has the highest value. The achieved results on shear stress caused by the fluid flow on the cell showed that the cell experiences shear stress in the range of 0 . 1 - 10 Pa . Mechanoreceptors that bind separately to the cell surface, can be highly stimulated by hydrodynamic pressure and, therefore, can play a role in the mechanical modulation of MSCs at in vitro conditions. The results of this research can be effective in future studies to optimize the conditions of mechanical stimuli applied to the cell culture medium and to determine the mechanisms involved in mechanotransduction.
Collapse
Affiliation(s)
- Mohammadreza Mohseni
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamidreza Azizi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Alloisio G, Rodriguez DB, Luce M, Ciaccio C, Marini S, Cricenti A, Gioia M. Cyclic Stretch-Induced Mechanical Stress Applied at 1 Hz Frequency Can Alter the Metastatic Potential Properties of SAOS-2 Osteosarcoma Cells. Int J Mol Sci 2023; 24:ijms24097686. [PMID: 37175397 PMCID: PMC10178551 DOI: 10.3390/ijms24097686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, there has been an increasing focus on cellular morphology and mechanical behavior in order to gain a better understanding of the modulation of cell malignancy. This study used uniaxial-stretching technology to select a mechanical regimen able to elevate SAOS-2 cell migration, which is crucial in osteosarcoma cell pathology. Using confocal and atomic force microscopy, we demonstrated that a 24 h 0.5% cyclic elongation applied at 1 Hz induces morphological changes in cells. Following mechanical stimulation, the cell area enlarged, developing a more elongated shape, which disrupted the initial nuclear-to-cytoplasm ratio. The peripheral cell surface also increased its roughness. Cell-based biochemical assays and real-time PCR quantification showed that these morphologically induced changes are unrelated to the osteoblastic differentiative grade. Interestingly, two essential cell-motility properties in the modulation of the metastatic process changed following the 24 h 1 Hz mechanical stimulation. These were cell adhesion and cell migration, which, in fact, were dampened and enhanced, respectively. Notably, our results showed that the stretch-induced up-regulation of cell motility occurs through a mechanism that does not depend on matrix metalloproteinase (MMP) activity, while the inhibition of ion-stretch channels could counteract it. Overall, our results suggest that further research on mechanobiology could represent an alternative approach for the identification of novel molecular targets of osteosarcoma cell malignancy.
Collapse
Affiliation(s)
- Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| |
Collapse
|
6
|
Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res 2022; 10:65. [PMID: 36411278 PMCID: PMC9678891 DOI: 10.1038/s41413-022-00234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, our scientific interest in spaceflight has grown exponentially and resulted in a thriving area of research, with hundreds of astronauts spending months of their time in space. A recent shift toward pursuing territories farther afield, aiming at near-Earth asteroids, the Moon, and Mars combined with the anticipated availability of commercial flights to space in the near future, warrants continued understanding of the human physiological processes and response mechanisms when in this extreme environment. Acute skeletal loss, more severe than any bone loss seen on Earth, has significant implications for deep space exploration, and it remains elusive as to why there is such a magnitude of difference between bone loss on Earth and loss in microgravity. The removal of gravity eliminates a critical primary mechano-stimulus, and when combined with exposure to both galactic and solar cosmic radiation, healthy human tissue function can be negatively affected. An additional effect found in microgravity, and one with limited insight, involves changes in dynamic fluid flow. Fluids provide the most fundamental way to transport chemical and biochemical elements within our bodies and apply an essential mechano-stimulus to cells. Furthermore, the cell cytoplasm is not a simple liquid, and fluid transport phenomena together with viscoelastic deformation of the cytoskeleton play key roles in cell function. In microgravity, flow behavior changes drastically, and the impact on cells within the porous system of bone and the influence of an expanding level of adiposity are not well understood. This review explores the role of interstitial fluid motion and solute transport in porous bone under two different conditions: normogravity and microgravity.
Collapse
|
7
|
Tajima H, Matsuse H, Hashida R, Nago T, Bekki M, Iwanaga S, Higashi E, Shiba N. Electrically stimulated eccentric contraction during non-weight bearing knee bending exercise in the supine position increases oxygen uptake: A randomized, controlled, exploratory crossover trial. PLoS One 2021; 16:e0259856. [PMID: 34793521 PMCID: PMC8601547 DOI: 10.1371/journal.pone.0259856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/24/2021] [Indexed: 12/02/2022] Open
Abstract
It is well known that prolonged bed rest induces muscle weakness, muscle atrophy, cardiovascular deconditioning, bone loss, a loss of functional capacity, and the development of insulin resistance. Neuromuscular electrical stimulation is anticipated to be an interventional strategy for disuse due to bed rest. A hybrid training system (HTS), synchronized neuromuscular electrical stimulation for voluntary exercise using an articular motion sensor, may increase the exercise load though bed rest. We assessed oxygen uptake or heart rate during knee bending exercise in the supine position on a bed both simultaneously combined with HTS and without HTS to evaluate exercise intensity on different days in ten healthy subjects (8 men and 2 women) by a randomized controlled crossover trial. The values of relative oxygen uptake during knee bending exercise with HTS were significantly greater than those during knee bending exercise without HTS (7.29 ± 0.91 ml/kg/min vs. 8.29 ± 1.06 ml/kg/min; p = 0.0115). That increment with HTS was a mean of 14.42 ± 13.99%. Metabolic equivalents during knee bending exercise with HTS and without HTS were 2.08 ± 0.26 and 2.39 ± 0.30, respectively. The values of heart rate during knee bending exercise with HTS were significantly greater than those during knee bending exercise without HTS (80.82 ± 9.19 bpm vs. 86.36 ± 5.50 bpm; p = 0.0153). HTS could increase exercise load during knee bending exercise which is easy to implement on a bed. HTS might be a useful technique as a countermeasure against the disuse due to bed rest, for example during acute care or the quarantine for infection prophylaxis.
Collapse
Affiliation(s)
- Hiroshi Tajima
- Rehabilitation Center, Kurume University, Kurume, Fukuoka, Japan
| | - Hiroo Matsuse
- Rehabilitation Center, Kurume University, Kurume, Fukuoka, Japan
- * E-mail:
| | - Ryuki Hashida
- Rehabilitation Center, Kurume University, Kurume, Fukuoka, Japan
| | - Takeshi Nago
- Rehabilitation Center, Kurume University, Kurume, Fukuoka, Japan
| | - Masafumi Bekki
- Rehabilitation Center, Kurume University, Kurume, Fukuoka, Japan
| | - Sohei Iwanaga
- Rehabilitation Center, Kurume University, Kurume, Fukuoka, Japan
| | - Eriko Higashi
- Rehabilitation Center, Kurume University, Kurume, Fukuoka, Japan
| | - Naoto Shiba
- Rehabilitation Center, Kurume University, Kurume, Fukuoka, Japan
| |
Collapse
|
8
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
9
|
Carriero A, Javaheri B, Bassir Kazeruni N, Pitsillides AA, Shefelbine SJ. Age and Sex Differences in Load-Induced Tibial Cortical Bone Surface Strain Maps. JBMR Plus 2021; 5:e10467. [PMID: 33778328 PMCID: PMC7990149 DOI: 10.1002/jbm4.10467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022] Open
Abstract
Bone adapts its architecture to the applied load; however, it is still unclear how bone mechano‐adaptation is coordinated and why potential for adaptation adjusts during the life course. Previous animal models have suggested strain as the mechanical stimulus for bone adaptation, but yet it is unknown how mouse cortical bone load‐related strains vary with age and sex. In this study, full‐field strain maps (at 1 N increments up to 12 N) on the bone surface were measured in young, adult, and old (aged 10, 22 weeks, and 20 months, respectively), male and female C57BL/6J mice with load applied using a noninvasive murine tibial model. Strain maps indicate a nonuniform strain field across the tibial surface, with axial compressive loads resulting in tension on the medial side of the tibia because of its curved shape. The load‐induced surface strain patterns and magnitudes show sexually dimorphic changes with aging. A comparison of the average and peak tensile strains indicates that the magnitude of strain at a given load generally increases during maturation, with tibias in female mice having higher strains than in males. The data further reveal that postmaturation aging is linked to sexually dimorphic changes in average and maximum strains. The strain maps reported here allow for loading male and female C57BL/6J mouse legs in vivo at the observed ages to create similar increases in bone surface average or peak strain to more accurately explore bone mechano‐adaptation differences with age and sex. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alessandra Carriero
- Department of Biomedical Engineering The City College of New York New York NY USA
| | - Behzad Javaheri
- School of Mathematics, Computer Science and Engineering, City University of London London UK
| | | | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences Royal Veterinary College London UK
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering and Department of Bioengineering Northeastern University Boston MA USA
| |
Collapse
|
10
|
Hart NH, Newton RU, Tan J, Rantalainen T, Chivers P, Siafarikas A, Nimphius S. Biological basis of bone strength: anatomy, physiology and measurement. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:347-371. [PMID: 32877972 PMCID: PMC7493450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 11/26/2022]
Abstract
Understanding how bones are innately designed, robustly developed and delicately maintained through intricate anatomical features and physiological processes across the lifespan is vital to inform our assessment of normal bone health, and essential to aid our interpretation of adverse clinical outcomes affecting bone through primary or secondary causes. Accordingly this review serves to introduce new researchers and clinicians engaging with bone and mineral metabolism, and provide a contemporary update for established researchers or clinicians. Specifically, we describe the mechanical and non-mechanical functions of the skeleton; its multidimensional and hierarchical anatomy (macroscopic, microscopic, organic, inorganic, woven and lamellar features); its cellular and hormonal physiology (deterministic and homeostatic processes that govern and regulate bone); and processes of mechanotransduction, modelling, remodelling and degradation that underpin bone adaptation or maladaptation. In addition, we also explore commonly used methods for measuring bone metabolic activity or material features (imaging or biochemical markers) together with their limitations.
Collapse
Affiliation(s)
- Nicolas H Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
- Institute of Health Research, The University of Notre Dame Australia, Fremantle, W.A., Australia
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, W.A., Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, W.A., Australia
| | - Jocelyn Tan
- Institute of Health Research, The University of Notre Dame Australia, Fremantle, W.A., Australia
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- School of Health Sciences, The University of Notre Dame Australia, Perth, W.A., Australia
| | - Timo Rantalainen
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
- Institute of Health Research, The University of Notre Dame Australia, Fremantle, W.A., Australia
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, W.A., Australia
- Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Paola Chivers
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
- Institute of Health Research, The University of Notre Dame Australia, Fremantle, W.A., Australia
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, W.A., Australia
| | - Aris Siafarikas
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
- Institute of Health Research, The University of Notre Dame Australia, Fremantle, W.A., Australia
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- Department of Endocrinology and Diabetes, Perth Childrens Hospital, Perth, W.A., Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, W.A., Australia
| | - Sophia Nimphius
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, W.A., Australia
| |
Collapse
|
11
|
Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev 2019; 11:729-743. [PMID: 31529361 DOI: 10.1007/s12551-019-00596-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Human body is subject to many and variegated mechanical stimuli, actuated in different ranges of force, frequency, and duration. The process through which cells "feel" forces and convert them into biochemical cascades is called mechanotransduction. In this review, the effects of fluid shear stress on bone cells will be presented. After an introduction to present the major players in bone system, we describe the mechanoreceptors in bone tissue that can feel and process fluid flow. In the second part of the review, we present an overview of the biological processes and biochemical cascades initiated by fluid shear stress in bone cells.
Collapse
Affiliation(s)
- Roberta Alfieri
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - National Research Council (IGM-CNR), Via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Massimo Vassalli
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy
| | - Federica Viti
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
12
|
Xie Y, Zhang L, Xiong Q, Gao Y, Ge W, Tang P. Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. Bone Res 2019; 7:25. [PMID: 31646015 PMCID: PMC6804735 DOI: 10.1038/s41413-019-0066-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery; however, the compromised and comminuted bones in osteoporotic fracture sites are not conducive to optimum reduction and rigid fixation. In addition, these patients always exhibit accompanying aging-related disorders, including high inflammatory status, decreased mechanical loading and abnormal skeletal metabolism, which are disadvantages for fracture healing around sites that have undergone orthopedic procedures. Since the incidence of osteoporosis is expected to increase worldwide, orthopedic surgeons should pay more attention to comprehensive strategies for improving the poor prognosis of osteoporotic fractures. Herein, we highlight the molecular basis of osteoimmunology and bone mechanosensation in different healing phases of elderly osteoporotic fractures, guiding perioperative management to alleviate the unfavorable effects of insufficient mechanical loading, high inflammatory levels and pathogen infection. The well-informed pharmacologic and surgical intervention, including treatment with anti-inflammatory drugs and sufficient application of antibiotics, as well as bench-to-bedside strategies for bone augmentation and hardware selection, should be made according to a comprehensive understanding of bone biomechanical properties in addition to the remodeling status of osteoporotic bones, which is necessary for creating proper biological and mechanical environments for bone union and remodeling. Multidisciplinary collaboration will facilitate the improvement of overall osteoporotic care and reduction of secondary fracture incidence.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Xiong
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Shipley T, Farouk K, El-Bialy T. Effect of high-frequency vibration on orthodontic tooth movement and bone density. J Orthod Sci 2019; 8:15. [PMID: 31497574 PMCID: PMC6702681 DOI: 10.4103/jos.jos_17_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES: Previous reports have shown that high-frequency vibration can increase bone remodeling and accelerate tooth movement. The aim of this study was to evaluate the effects of high-frequency vibration on treatment phase tooth movement, and post-treatment bone density at initiation of retention, with cone-beam computed tomography (CBCT). MATERIALS AND METHODS: Thirty patients with initial Class I skeletal relationships, initial minimum-moderate crowding (3–5 mm), treated to completion with clear aligners and adjunctive high-frequency vibration, (HFV group) or no vibration, (Control group) were evaluated. The patients were instructed to change aligners as soon as they become loose. Changes in bone density associated with orthodontic treatment were evaluated using i-CAT cone-beam computed tomography (CBCT) and InVivo Anatomage® software to quantify density using Hounsfield units (HU) between treated teeth in 10 different regions. HU values were averaged and compared against baseline (T1) and between the groups at initiation of retention (T2). RESULTS: The average time for aligner change was 5.2 days in the HFV group, and 8.7 days in the control group (P = 0.0001). There was significant T1 to T2 increase of HU values in the upper arch (P = 0.0001) and the lower arch (P = 0.008) in the HFV group. There was no significant change in average HU values in the upper (P = 0.83) or lower arches (P = 0.33) in the control group. The intergroup comparison revealed a significant difference in the upper, (P = 0.0001) and lower arches (P = 0.007). CONCLUSION: High-frequency vibration adjunctive to clear aligners, allowed early aligner changes that led to shorter treatment time in minimum-moderate crowded cases. At initiation of retention, the HFV group demonstrated statistically significant increase as compared with pre-treatment bone density, whereas control subjects showed no significant change from pre-treatment bone density.
Collapse
Affiliation(s)
- Thomas Shipley
- Department of Dentistry, Division of Orthodontics, Arizona School of Dentistry and Oral Health, A.T. Still University, Mesa, Arizona, USA.,Department of Orthodontics, Mesa, Arizona, USA
| | - Khaled Farouk
- Department of Orthodontics, Faculty of Dental Medicine, Al-Azhar University, Cairo, Egypt.,Department of Dentistry, Division of Orthodontics, University of Alberta, Edmonton, Canada
| | - Tarek El-Bialy
- Department of Dentistry, Division of Orthodontics, 7-020D Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Zeng Q, Wang Y, Gao J, Yan Z, Li Z, Zou X, Li Y, Wang J, Guo Y. miR-29b-3p regulated osteoblast differentiation via regulating IGF-1 secretion of mechanically stimulated osteocytes. Cell Mol Biol Lett 2019; 24:11. [PMID: 30915127 PMCID: PMC6416934 DOI: 10.1186/s11658-019-0136-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background Mechanical loading is an essential factor for bone formation. A previous study indicated that mechanical tensile strain of 2500 microstrain (με) at 0.5 Hz for 8 h promoted osteogenesis and corresponding mechanoresponsive microRNAs (miRs) were identified in osteoblasts. However, in osteocytes, it has not been identified which miRs respond to the mechanical strain, and it is not fully understood how the mechanoresponsive miRs regulate osteoblast differentiation. Methods Mouse MLO-Y4 osteocytes were applied to the same mechanical tensile strain in vitro. Using molecular and biochemical methods, IGF-1 (insulin-like growth factor-1), PGE2 (prostaglandin E2), OPG (osteoprotegerin) and NOS (nitric oxide synthase) activities of the cells were assayed. MiR microarray and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were applied to select and validate differentially expressed miRs, and the target genes of these miRs were then predicted. MC3T3-E1 osteoblasts were stimulated by the mechanical tensile strain, and the miR-29b-3p expression was detected with miR microarray and RT-qPCR. Additionally, the effect of miR-29b-3p on IFG-1 secretion of osteocytes and the influence of conditioned medium of osteocytes transfected with miR-29b-3p on osteoblast differentiation were investigated. Results The mechanical strain increased secretions of IGF-1 and PGE2, elevated OPG expression and NOS activities, and resulted in altered expression of the ten miRs, and possible target genes for these differentially expressed miRs were revealed through bioinformatics. Among the ten miRs, miR-29b-3p were down-regulated, and miR-29b-3p overexpression decreased the IGF-1 secretion of osteocytes. The mechanical strain did not change expression of osteoblasts' miR-29b-3p. In addition, the conditioned medium of mechanically strained osteocytes promoted osteoblast differentiation, and the conditioned medium of osteocytes transfected with miR-29b-3p mimic inhibited osteoblast differentiation. Conclusions In osteocytes (but not osteoblasts), miR-29b-3p was responsive to the mechanical tensile strain and regulated osteoblast differentiation via regulating IGF-1 secretion of mechanically strained osteocytes.
Collapse
Affiliation(s)
- Qiangcheng Zeng
- 1key laboratory of Functional Bioresource Utilization in University of Shandong, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, 253023 China
| | - Yang Wang
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China.,3Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044 China
| | - Jie Gao
- 1key laboratory of Functional Bioresource Utilization in University of Shandong, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, 253023 China.,Medical Department, Secondary Renmin Hospital of Dezhou, Dezhou, 253023 Shangdong China
| | - Zhixiong Yan
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| | - Zhenghua Li
- 1key laboratory of Functional Bioresource Utilization in University of Shandong, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, 253023 China
| | - Xianqiong Zou
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| | - Yanan Li
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| | - Jiahui Wang
- 2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| | - Yong Guo
- 1key laboratory of Functional Bioresource Utilization in University of Shandong, Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, 253023 China.,2Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, No. 1 Zhiyuan Road, Lingui District, Guilin City, 541100 Guangxi China
| |
Collapse
|
15
|
Stavenschi E, Corrigan MA, Johnson GP, Riffault M, Hoey DA. Physiological cyclic hydrostatic pressure induces osteogenic lineage commitment of human bone marrow stem cells: a systematic study. Stem Cell Res Ther 2018; 9:276. [PMID: 30359324 PMCID: PMC6203194 DOI: 10.1186/s13287-018-1025-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/27/2018] [Accepted: 09/30/2018] [Indexed: 01/12/2023] Open
Abstract
Background Physical loading is necessary to maintain bone tissue integrity. Loading-induced fluid shear is recognised as one of the most potent bone micromechanical cues and has been shown to direct stem cell osteogenesis. However, the effect of pressure transients, which drive fluid flow, on human bone marrow stem cell (hBMSC) osteogenesis is undetermined. Therefore, the objective of the study is to employ a systematic analysis of cyclic hydrostatic pressure (CHP) parameters predicted to occur in vivo on early hBMSC osteogenic responses and late-stage osteogenic lineage commitment. Methods hBMSC were exposed to CHP of 10 kPa, 100 kPa and 300 kPa magnitudes at frequencies of 0.5 Hz, 1 Hz and 2 Hz for 1 h, 2 h and 4 h of stimulation, and the effect on early osteogenic gene expression of COX2, RUNX2 and OPN was determined. Moreover, to decipher whether CHP can induce stem cell lineage commitment, hBMSCs were stimulated for 4 days for 2 h/day using 10 kPa, 100 kPa and 300 kPa pressures at 2 Hz frequency and cultured statically for an additional 1–2 weeks. Pressure-induced osteogenesis was quantified based on ATP release, collagen synthesis and mineral deposition. Results CHP elicited a positive, but variable, early osteogenic response in hBMSCs in a magnitude- and frequency-dependent manner, that is gene specific. COX2 expression elicited magnitude-dependent effects which were not present for RUNX2 or OPN mRNA expression. However, the most robust pro-osteogenic response was found at the highest magnitude (300 kPa) and frequency regimes (2 Hz). Interestingly, long-term mechanical stimulation utilising 2 Hz frequency elicited a magnitude-dependent release of ATP; however, all magnitudes promoted similar levels of collagen synthesis and significant mineral deposition, demonstrating that lineage commitment is magnitude independent. This therefore demonstrates that physiological levels of pressures, as low as 10 kPa, within the bone can drive hBMSC osteogenic lineage commitment. Conclusion Overall, these findings demonstrate an important role for cyclic hydrostatic pressure in hBMSCs and bone mechanobiology, which should be considered when studying pressure-driven fluid shear effects in hBMSCs mechanobiology. Moreover, these findings may have clinical implication in terms of bioreactor-based bone tissue engineering strategies. Electronic supplementary material The online version of this article (10.1186/s13287-018-1025-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Stavenschi
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Michele A Corrigan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Gillian P Johnson
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
| | - Mathieu Riffault
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin 2, Ireland
| | - David A Hoey
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland. .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland. .,Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland. .,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin 2, Ireland.
| |
Collapse
|
16
|
Mikolajewicz N, Zimmermann EA, Willie BM, Komarova SV. Mechanically stimulated ATP release from murine bone cells is regulated by a balance of injury and repair. eLife 2018; 7:37812. [PMID: 30324907 PMCID: PMC6205812 DOI: 10.7554/elife.37812] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Bone cells sense and actively adapt to physical perturbations to prevent critical damage. ATP release is among the earliest cellular responses to mechanical stimulation. Mechanical stimulation of a single murine osteoblast led to the release of 70 ± 24 amole ATP, which stimulated calcium responses in neighboring cells. Osteoblasts contained ATP-rich vesicles that were released upon mechanical stimulation. Surprisingly, interventions that promoted vesicular release reduced ATP release, while inhibitors of vesicular release potentiated ATP release. Searching for an alternative ATP release route, we found that mechanical stresses induced reversible cell membrane injury in vitro and in vivo. Ca2+/PLC/PKC-dependent vesicular exocytosis facilitated membrane repair, thereby minimizing cell injury and reducing ATP release. Priming cellular repair machinery prior to mechanical stimulation reduced subsequent membrane injury and ATP release, linking cellular mechanosensitivity to prior mechanical exposure. Thus, our findings position ATP release as an integrated readout of membrane injury and repair. Athletes' skeletons get stronger with training, while bones weaken in people who cannot move or in astronauts experiencing weightlessness. This is because bone cells thrive when exposed to forces. When a bone cell is exposed to a physical force, the first thing that happens is the release of the energy-rich molecule called ATP into the space outside the cell. This molecule then binds to the neighboring cell to unleash a cascade of responses. ATP can exit the cell either through special canals in the cell membrane or released in tiny pod-like structures called vesicles. It is known that strong forces can injure the cell membrane and cause ATP to spill out. However, it is less clear how ATP is released when cells are subjected to regular forces. Mikolajewicz et al. investigated whether ATP exits through injured membranes of cells experiencing regular forces. Bone cells grown in the laboratory were gently poked with a glass needle or placed in a turbulent fluid to simulate forces experienced in the body. Dyes and fluorescent imaging techniques were used to observe the movement of vesicles and calculate the concentration of ATP in these cells. The experiments showed that regular forces in the body do indeed injure the cell membranes and cause ATP to spill out. But importantly, the cells repaired the injuries quickly by releasing vesicles that patch the wound. As soon as the membrane is sealed, ATP stops coming out. From the first injury, cells adapted and quickly strengthened their membrane and repair system to be more resilient against future forces. This process was also seen in the shin bones of mice. These results are important because knowing how bone cells sense, respond and convert physical forces can help us develop treatments for astronauts, the injured and aged.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| | - Elizabeth A Zimmermann
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Pediatric Surgery, Montreal, Quebec, Canada
| | - Bettina M Willie
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Pediatric Surgery, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.,Shriners Hospital for Children - Canada, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Hart N, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton R. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:114-139. [PMID: 28860414 PMCID: PMC5601257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 11/09/2022]
Abstract
This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone's ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone's complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation.
Collapse
Affiliation(s)
- N.H. Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
| | - S. Nimphius
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth, W.A., Australia
| | - T. Rantalainen
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - A. Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - A. Siafarikas
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- Department of Endocrinology, Princess Margaret Hospital, Perth, W.A., Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, W.A., Australia
- Institute of Health Research, University of Notre Dame Australia, Perth, W.A., Australia
| | - R.U. Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
| |
Collapse
|
18
|
de Oliveira LSDS, de Araújo AA, de Araújo Júnior RF, Barboza CAG, Borges BCD, da Silva JSP. Low-level laser therapy (780 nm) combined with collagen sponge scaffold promotes repair of rat cranial critical-size defects and increases TGF-β, FGF-2, OPG/RANK and osteocalcin expression. Int J Exp Pathol 2017; 98:75-85. [PMID: 28556971 DOI: 10.1111/iep.12226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/09/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate the effect of collagen sponge scaffold (CSS) implantation associated with low-level laser therapy (LLLT) on repairing bone defects. A single 5-mm cranial defect was surgically created in forty Wistar rats, which then received one of the following four interventions (n = 10 per group): no treatment (G0); bone defect implanted with collagen sponge scaffold (CSS) alone (G1); defect treated with low-level laser therapy (LLLT) (wavelength 780 nm; total energy density 120 J/cm2 ; power 50 mW) alone (G2); and CSS associated with LLLT treatment (G3). After surgery, animals in each group were euthanized at 21 days and 30 days (n = 5 per euthanasia time group). Bone formation was monitored by X-ray imaging analysis. Biopsies were collected and processed for histological analysis and immunohistochemical evaluation of transforming growth factor-beta (TGF-β), fibroblast growth factor-2 (FGF-2), osteoprotegerin (OPG) and receptor activator of nuclear factor ƙ (RANK). Osteocalcin (OCN) was detected by immunofluorescence analysis. Compared to the G0 group, defects in the 30-day G3 group exhibited increased bone formation, both by increase in radiopaque areas (P < 0.01) and by histomorphometric analysis (P < 0.001). The histopathological analysis showed a decreased number of inflammatory cells (P < 0.001). The combined CCS + LLLT (G3) treatment also resulted in the most intense immunostaining for OPG, RANK, FGF-2 and TGF-β, and the most intense and diffuse OCN immunofluorescent labelling at 30 days postsurgery (G3 vs. G0 group, P < 0.05). Therefore, the use of CCS associated with LLLT could offer a synergistic advantage in improving the healing of bone fractures.
Collapse
Affiliation(s)
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Post Graduation Program in Public Health/Post Graduation Program in Pharmaceutical Science, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo Fernandes de Araújo Júnior
- Department of Morphology, Post Graduation Program in Health Science/Post Graduation Program in Functional and Structural Biology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos Augusto Galvão Barboza
- Department of Morphology, Post-Graduation Program in Oral Pathology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Boniek Castillo Dutra Borges
- Department of Dentistry, Post-Graduation Program in Public Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - José Sandro Pereira da Silva
- Department of Dentistry, Post-Graduation Program in Public Health, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
19
|
Wang L, Hsu HY, Li X, Xian CJ. Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2735091. [PMID: 28074178 PMCID: PMC5198261 DOI: 10.1155/2016/2735091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022]
Abstract
Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85-48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies.
Collapse
Affiliation(s)
- Liping Wang
- The Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Hung-Yao Hsu
- School of Engineering, University of South Australia, Adelaide, SA 5095, Australia
| | - Xu Li
- The Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
| | - Cory J. Xian
- The Third Affiliated Hospital of Southern Medical University, Orthopaedic Hospital of Guangdong Province, Guangzhou 510630, China
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
20
|
Zhang X, Wang Q, Wan Z, Li J, Liu L, Zhang X. CKIP-1 knockout offsets osteoporosis induced by simulated microgravity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:140-148. [PMID: 27666961 DOI: 10.1016/j.pbiomolbio.2016.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/03/2016] [Accepted: 09/21/2016] [Indexed: 01/16/2023]
Abstract
Casein kinase 2-interacting protein 1 (CKIP-1) is a negative regulator for bone formation. CKIP-1 knockout (KO) mice are very important for research on countermeasures to bone loss induced by space microgravity. Under simulated microgravity, the bone metabolism of CKIP-1 KO mice was different than that of wild-type (WT) mice. Many experiments all showed that the KO mice had significantly enhanced ossification in the tail suspension conditions, and the differences were closely related to the time the mice were exposed to the microgravity environment. Our results reveal the effect of CKIP-1 on the regulation of bone metabolism and osteogenesis in vivo and the ability of this gene to offset osteoporosis, and they suggest an approach to the treatment of osteoporosis induced by microgravity in space.
Collapse
Affiliation(s)
- Xinchang Zhang
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China; Institute of Medical Equipment, Academy of Military Medical Science, Tianjin, China
| | - Qiangsong Wang
- Institute of Medical Equipment, Academy of Military Medical Science, Tianjin, China
| | - Zongming Wan
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China
| | - Jianyu Li
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China
| | - Lu Liu
- Department of Clinical Medicine, Logistical College of People's Armed Police Forces, Tianjin, China
| | - Xizheng Zhang
- Institute of Medical Equipment, Academy of Military Medical Science, Tianjin, China.
| |
Collapse
|
21
|
Melatonin Suppresses Autophagy Induced by Clinostat in Preosteoblast MC3T3-E1 Cells. Int J Mol Sci 2016; 17:526. [PMID: 27070587 PMCID: PMC4848982 DOI: 10.3390/ijms17040526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Microgravity exposure can cause cardiovascular and immune disorders, muscle atrophy, osteoporosis, and loss of blood and plasma volume. A clinostat device is an effective ground-based tool for simulating microgravity. This study investigated how melatonin suppresses autophagy caused by simulated microgravity in preosteoblast MC3T3-E1 cells. In preosteoblast MC3T3-E1 cells, clinostat rotation induced a significant time-dependent increase in the levels of the autophagosomal marker microtubule-associated protein light chain (LC3), suggesting that autophagy is induced by clinostat rotation in these cells. Melatonin treatment (100, 200 nM) significantly attenuated the clinostat-induced increases in LC3 II protein, and immunofluorescence staining revealed decreased levels of both LC3 and lysosomal-associated membrane protein 2 (Lamp2), indicating a decrease in autophagosomes. The levels of phosphorylation of mammalian target of rapamycin (p-mTOR) (Ser2448), phosphorylation of extracellular signal-regulated kinase (p-ERK), and phosphorylation of serine-threonine protein kinase (p-Akt) (Ser473) were significantly reduced by clinostat rotation. However, their expression levels were significantly recovered by melatonin treatment. Also, expression of the Bcl-2, truncated Bid, Cu/Zn- superoxide dismutase (SOD), and Mn-SOD proteins were significantly increased by melatonin treatment, whereas levels of Bax and catalase were decreased. The endoplasmic reticulum (ER) stress marker GRP78/BiP, IRE1α, and p-PERK proteins were significantly reduced by melatonin treatment. Treatment with the competitive melatonin receptor antagonist luzindole blocked melatonin-induced decreases in LC3 II levels. These results demonstrate that melatonin suppresses clinostat-induced autophagy through increasing the phosphorylation of the ERK/Akt/mTOR proteins. Consequently, melatonin appears to be a potential therapeutic agent for regulating microgravity-related bone loss or osteoporosis.
Collapse
|
22
|
Zhu Z, Ma R, Yang Y, Gan X. [Effects of different frequency microvibrations in the vascular endothelial growth factor expression and permeability of vascular endothelial cell]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:136-139. [PMID: 27337920 PMCID: PMC7029964 DOI: 10.7518/hxkq.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/16/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE This study aimed to evaluate the vascular endothelial growth factor (VEGF) expression and permeability of vascular endothelial cell under microvibration. METHODS Human umbilical vein endothelial cell (HUVEC) were cultured, randomly vibrated under low frequency of 0.2, 0.5, 2, 5 Hz, 30 min per day. The VEGF mRNA level was detected by Tagman probe real-time fluorescence quantitative polymerase chain reaction (PCR), and the VEGF protein expression level was detected by Western blot. The permeability of vascular endothelial cell was evaluated. RESULTS Compared with the blank control group, the mRNA and protein expression level of VEGF were significantly increased under 0.2, 0.5 Hz thelial, and increase the permeability microvibration (P<0.05), and decreased under 2, 5 Hz microvibration (P<0.01). The vascular endothelial permeability in creased under 0.2, 0.5 Hz microvibration (P<0.01), whereas the permeability decreased under 2, 5 Hz microvibration (P<0.01). CONCLUSION 0.2-0.5 Hz microvibration can up-regulate the expression of VEGF mRNA and protein in vascular endothelial, and increase the permeability.
Collapse
|
23
|
Zhu Z, Ma R, Yang Y, Gan X. [Effects of different frequency microvibrations in the vascular endothelial growth factor expression and permeability of vascular endothelial cell]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:136-9. [PMID: 27337920 PMCID: PMC7029964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/16/2016] [Indexed: 07/26/2024]
Abstract
OBJECTIVE This study aimed to evaluate the vascular endothelial growth factor (VEGF) expression and permeability of vascular endothelial cell under microvibration. METHODS Human umbilical vein endothelial cell (HUVEC) were cultured, randomly vibrated under low frequency of 0.2, 0.5, 2, 5 Hz, 30 min per day. The VEGF mRNA level was detected by Tagman probe real-time fluorescence quantitative polymerase chain reaction (PCR), and the VEGF protein expression level was detected by Western blot. The permeability of vascular endothelial cell was evaluated. RESULTS Compared with the blank control group, the mRNA and protein expression level of VEGF were significantly increased under 0.2, 0.5 Hz thelial, and increase the permeability microvibration (P<0.05), and decreased under 2, 5 Hz microvibration (P<0.01). The vascular endothelial permeability in creased under 0.2, 0.5 Hz microvibration (P<0.01), whereas the permeability decreased under 2, 5 Hz microvibration (P<0.01). CONCLUSION 0.2-0.5 Hz microvibration can up-regulate the expression of VEGF mRNA and protein in vascular endothelial, and increase the permeability.
Collapse
|