1
|
Fachal-Suárez M, Krishnan S, Chaiprapat S, González D, Gabriel D. An overview of biomethanation and the use of membrane technologies as a candidate to overcome H 2 mass transfer limitations. Biotechnol Adv 2024; 77:108465. [PMID: 39413888 DOI: 10.1016/j.biotechadv.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Energy produced from renewable sources such as sun or wind are intermittent, depending on circumstantial factors. This fact explains why energy supply and demand do not match. In this context, the interest in biomethanation has increased as an interesting contribution to the Power-to-gas concept (P2G), transforming the extra amount of produced electricity into methane (CH4). The reaction between green hydrogen (H2) (produced by electrolysis) and CO2 (pollutant present in biogas) can be catalysed by different microorganisms to produce biomethane, that can be injected into existing natural gas grid if reaching the standards. Thus, energy storage for both hydrogen and electricity, as well as transportation problems would be solved. However, H2 diffusion to the liquid phase for its further biological conversion is the main bottleneck due to the low solubility of H2. This review includes the state-of-the-art in biological hydrogenotrophic methanation (BHM) and membrane-based technologies. Specifically, the use of hollow-fiber membrane bioreactors as a technology to overcome H2 diffusion limitations is reviewed. Furthermore, the influence of operating conditions, microbiology, H2 diffusion and H2 injection methods are critically discussed before setting the main recommendations about BHM.
Collapse
Affiliation(s)
- Manuel Fachal-Suárez
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Daniel González
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Paulchamy C, Vakkattuthundi Premji S, Shanmugam S. Methanogens and what they tell us about how life might survive on Mars. Crit Rev Biochem Mol Biol 2024; 59:337-362. [PMID: 39488737 DOI: 10.1080/10409238.2024.2418639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.
Collapse
Affiliation(s)
- Chellapandi Paulchamy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Sreekutty Vakkattuthundi Premji
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Saranya Shanmugam
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
3
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Roxo I, Amaral A, Portugal A, Trovão J. A preliminary metabarcoding analysis of Portuguese raw honeys. Arch Microbiol 2023; 205:386. [PMID: 37982894 DOI: 10.1007/s00203-023-03725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The microbial diversity in Portuguese raw honeys remains largely uncharacterized, constituting a serious knowledge gap in one of the country's most important resources. This work provides an initial investigation with amplicon metabarcoding analysis of two Lavandula spp. from different geographical regions of Portugal and one Eucalyptus spp. honey. The results obtained allowed to identify that each honey harbors diverse microbiomes with taxa that can potentially affect bee and human health, cause spoilage, and highlight bad bee-hive management practices. We verified that prokaryotes had a tendency towards a more marked core bacterial and a relative homogenous taxa distribution, and that the botanical origin of honey is likely to have a stronger impact on the fungal community. Thus, the results obtained in this work provide important information that can be helpful to improve this critical Portuguese product and industry.
Collapse
Affiliation(s)
- Ivo Roxo
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
| | - António Amaral
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga/Guimarães, Portugal
- Instituto de Investigação Aplicada, Laboratório SiSus, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
| | - António Portugal
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- Centre for Functional Ecology-Science for People & the Planet, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - João Trovão
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Centre for Functional Ecology-Science for People & the Planet, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
5
|
Weber JM, Marlin TC, Prakash M, Teece BL, Dzurilla K, Barge LM. A Review on Hypothesized Metabolic Pathways on Europa and Enceladus: Space-Flight Detection Considerations. Life (Basel) 2023; 13:1726. [PMID: 37629583 PMCID: PMC10456045 DOI: 10.3390/life13081726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies have sought to better constrain these conditions. With these constraints, researchers have, based on modeling and experimental studies, hypothesized a number of possible metabolisms that could exist on Europa and Enceladus if these worlds host life. The most often hypothesized metabolisms are methanogenesis for Enceladus and methane oxidation/sulfate reduction on Europa. Here, we outline, review, and compare the best estimated conditions of each moon's ocean. We then discuss the hypothetical metabolisms that have been suggested to be present on these moons, based on laboratory studies and Earth analogs. We also detail different detection methods that could be used to detect these hypothetical metabolic reactions and make recommendations for future research and considerations for future missions.
Collapse
Affiliation(s)
- Jessica M. Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA (B.L.T.); (K.D.); (L.M.B.)
| | | | | | | | | | | |
Collapse
|
6
|
Taubner RS, Baumann LMF, Steiner M, Pfeifer K, Reischl B, Korynt K, Bauersachs T, Mähnert B, Clifford EL, Peckmann J, Schuster B, Birgel D, Rittmann SKMR. Lipidomics and Comparative Metabolite Excretion Analysis of Methanogenic Archaea Reveal Organism-Specific Adaptations to Varying Temperatures and Substrate Concentrations. mSystems 2023; 8:e0115922. [PMID: 36880756 PMCID: PMC10134847 DOI: 10.1128/msystems.01159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
Methanogenic archaea possess diverse metabolic characteristics and are an ecologically and biotechnologically important group of anaerobic microorganisms. Although the scientific and biotechnological value of methanogens is evident with regard to their methane-producing physiology, little is known about their amino acid excretion, and virtually nothing is known about the lipidome at different substrate concentrations and temperatures on a quantitative comparative basis. Here, we present the lipidome and a comprehensive quantitative analysis of proteinogenic amino acid excretion as well as methane, water, and biomass production of the three autotrophic, hydrogenotrophic methanogens Methanothermobacter marburgensis, Methanothermococcus okinawensis, and Methanocaldococcus villosus under varying temperatures and nutrient supplies. The patterns and rates of production of excreted amino acids and the lipidome are unique for each tested methanogen and can be modulated by varying the incubation temperature and substrate concentration, respectively. Furthermore, the temperature had a significant influence on the lipidomes of the different archaea. The water production rate was much higher, as anticipated from the rate of methane production for all studied methanogens. Our results demonstrate the need for quantitative comparative physiological studies connecting intracellular and extracellular constraints of organisms to holistically investigate microbial responses to environmental conditions. IMPORTANCE Biological methane production by methanogenic archaea has been well studied for biotechnological purposes. This study reveals that methanogenic archaea actively modulate their lipid inventory and proteinogenic amino acid excretion pattern in response to environmental changes and the possible utilization of methanogenic archaea as microbial cell factories for the targeted production of lipids and amino acids.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Institute for Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Upper Austria, Austria
- Space Research Institute, Austrian Academy of Sciences, Graz, Styria, Austria
| | - Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Michael Steiner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Institute for Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Arkeon GmbH, Tulln an der Donau, Austria
| | - Kordian Korynt
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Thorsten Bauersachs
- Institute of Geosciences, Department of Organic Geochemistry, Christian Albrechts Universität, Kiel, Schleswig-Holstein, Germany
| | - Barbara Mähnert
- Marine Biology/Microbial Oceanography, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Elisabeth L. Clifford
- Marine Biology/Microbial Oceanography, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Jörn Peckmann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Arkeon GmbH, Tulln an der Donau, Austria
| |
Collapse
|
7
|
Lyu Z, Rotaru AE, Pimentel M, Zhang CJ, Rittmann SKMR. Editorial: The methane moment - Cross-boundary significance of methanogens: Preface. Front Microbiol 2022; 13:1055494. [PMID: 36504803 PMCID: PMC9731359 DOI: 10.3389/fmicb.2022.1055494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Zhe Lyu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States,Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Zhe Lyu
| | - Amelia-Elena Rotaru
- Nordic Center for Earth Evolution (NORDCEE), University of Southern Denmark, Odense, Denmark,Amelia-Elena Rotaru
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, United States,Mark Pimentel
| | - Cui-Jing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China,Cui-Jing Zhang
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria,Arkeon GmbH, Tulln a.d. Donau, Austria,Simon K.-M. R. Rittmann
| |
Collapse
|
8
|
Carrizo D, de Dios-Cubillas A, Sánchez-García L, López I, Prieto-Ballesteros O. Interpreting Molecular and Isotopic Biosignatures in Methane-Derived Authigenic Carbonates in the Light of a Potential Carbon Cycle in the Icy Moons. ASTROBIOLOGY 2022; 22:552-567. [PMID: 35325553 DOI: 10.1089/ast.2021.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Finding evidence of life beyond Earth is the aim of future space missions to icy moons. Icy worlds with an ocean underlying the icy crust and in contact with a rocky subsurface have great astrobiological interest due to the potential for water-rock interactions that may provide a source of nutrients necessary to sustain life. Such water-rock interactions in icy moons can be indirectly investigated using analogous environments on the deep seafloor on Earth. Here, we investigate the presence of molecular and isotopic biomarkers in two submarine cold seep systems with intense rock-fluid interactions and carbon sink as carbonates with the aim of gaining understanding of potential carbon cycles in the icy worlds' oceans. Authigenic carbonates associated to cold seeps (a chimney from the Gulf of Cádiz and a clathrite from the Pacific Hydrate Ridge) were investigated for their mineralogical composition and lipid biomarker distribution. Molecular and compound-specific isotopic composition of lipid biomarkers allowed us to infer different carbonate origins in both carbonate scenarios: biogenic methane (clathrite) versus thermogenic methane together with allochthonous carbon (chimney). In the Pacific cold seep, carbonate precipitation of the clathrite was deduced to result from the anaerobic oxidation of methane by syntrophic action of methanotrophic archaea with sulfate-reducing bacteria. The distinct carbon sources (thermogenic methane, pelagic biomass, etc.) and sinks (gas clathrates, clathrite, chimney carbonates) were discussed in the light of potentially similar carbon cycling pathways in analogous icy-moon oceans. We show how the isotopic analysis of carbon may be crucial for detecting biosignatures in icy-world carbon sinks. These considerations may affect the strategy of searching for biosignatures in future space missions to the icy worlds.
Collapse
Affiliation(s)
- D Carrizo
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - A de Dios-Cubillas
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, King Juan Carlos University, Móstoles, Madrid, Spain
| | - L Sánchez-García
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - I López
- Department of Biology, Geology, Physics and Inorganic Chemistry, King Juan Carlos University, Móstoles, Madrid, Spain
| | | |
Collapse
|
9
|
Baumann LMF, Taubner RS, Oláh K, Rohrweber AC, Schuster B, Birgel D, Rittmann SKMR. Quantitative Analysis of Core Lipid Production in Methanothermobacter marburgensis at Different Scales. Bioengineering (Basel) 2022; 9:169. [PMID: 35447729 PMCID: PMC9027985 DOI: 10.3390/bioengineering9040169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Archaeal lipids have a high biotechnological potential, caused by their high resistance to oxidative stress, extreme pH values and temperatures, as well as their ability to withstand phospholipases. Further, methanogens, a specific group of archaea, are already well-established in the field of biotechnology because of their ability to use carbon dioxide and molecular hydrogen or organic substrates. In this study, we show the potential of the model organism Methanothermobacter marburgensis to act both as a carbon dioxide based biological methane producer and as a potential supplier of archaeal lipids. Different cultivation settings were tested to gain an insight into the optimal conditions to produce specific core lipids. The study shows that up-scaling at a constant particle number (n/n = const.) seems to be a promising approach. Further optimizations regarding the length and number of the incubation periods and the ratio of the interaction area to the total liquid volume are necessary for scaling these settings for industrial purposes.
Collapse
Affiliation(s)
- Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria;
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Altenbergerstraße 69, 4040 Linz, Austria
| | - Kinga Oláh
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
| | - Ann-Cathrin Rohrweber
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (K.O.); (B.S.)
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany; (L.M.F.B.); (A.-C.R.); (D.B.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Djerassiplatz 1, 1030 Wien, Austria;
- Arkeon GmbH, Technopark 1, 3430 Tulln an der Donau, Austria
| |
Collapse
|
10
|
Tenelanda-Osorio LI, Parra JL, Cuartas-Restrepo P, Zuluaga JI. Enceladus as a Potential Niche for Methanogens and Estimation of Its Biomass. Life (Basel) 2021; 11:1182. [PMID: 34833058 PMCID: PMC8624164 DOI: 10.3390/life11111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Enceladus is a potential target for future astrobiological missions. NASA's Cassini spacecraft demonstrated that the Saturnian moon harbors a salty ocean beneath its icy crust and the existence and analysis of the plume suggest water-rock reactions, consistent with the possible presence of hydrothermal vents. Particularly, the plume analysis revealed the presence of molecular hydrogen, which may be used as an energy source by microorganisms ( e.g., methanogens). This could support the possibility that populations of methanogens could establish in such environments if they exist on Enceladus. We took a macroscale approximation using ecological niche modeling to evaluate whether conditions suitable for methanogenic archaea on Earth are expected in Enceladus. In addition, we employed a new approach for computing the biomass using the Monod growth model. The response curves for the environmental variables performed well statistically, indicating that simple correlative models may be used to approximate large-scale distributions of these genera on Earth. We found that the potential hydrothermal conditions on Enceladus fit within the macroscale conditions identified as suitable for methanogens on Earth, and estimated a concentration of 1010-1011 cells/cm3.
Collapse
Affiliation(s)
- Laura I. Tenelanda-Osorio
- Grupo de Estudios en Astrobiología AMEBA, Planetario de Medellín, Medellín 050010, Colombia;
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología-FCEN, Universidad de Antioquia, Medellín 050010, Colombia;
- Solar, Earth and Planetary Physics—SEAP, Instituto de Física-FCEN, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología-FCEN, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Pablo Cuartas-Restrepo
- Solar, Earth and Planetary Physics—SEAP, Instituto de Física-FCEN, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Jorge I. Zuluaga
- Grupo de Estudios en Astrobiología AMEBA, Planetario de Medellín, Medellín 050010, Colombia;
- Solar, Earth and Planetary Physics—SEAP, Instituto de Física-FCEN, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
11
|
Distribution of Sulfate-Reducing Bacteria in the Environment: Cryopreservation Techniques and Their Potential Storage Application. Processes (Basel) 2021. [DOI: 10.3390/pr9101843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are a heterogeneous group of anaerobic microorganisms that play an important role in producing hydrogen sulfide not only in the natural environment, but also in the gastrointestinal tract and oral cavity of animals and humans. The present review was written with the inclusion of 110 references including the time period from 1951 to 2021. The following databases were evaluated: Web of Science, Scopus and Google Scholar. The articles chosen to be included in the review were written mainly in the English and Czech languages. The molecular mechanisms of microbial cryoprotection differ depending on the environment where microorganisms were initially isolated. It was observed that the viability of microorganisms after cryopreservation is dependent on a number of factors, primarily colony age, amount of inoculum, cell size or rate of cooling, and their molecular inventory. Therefore, this paper is devoted to assessing the performance and suitability of various cryopreservation methods of intestinal bacteria, including molecular mechanisms of their protection. In order to successfully complete the cryopreservation process, selecting the correct laboratory equipment and cryopreservation methodology is important. Our analysis revealed that SRB should be stored in glass vials to help mitigate the corrosive nature of hydrogen sulfide, which can affect their physiology on a molecular level. Furthermore, it is recommended that their storage be performed in distilled water or in a suspension with a low salt concentration. From a molecular biological and bioengineering perspective, this contribution emphasizes the need to consider the potential impact associated with SRB in the medical, construction, and environmental sectors.
Collapse
|
12
|
Katsoula A, Vasileiadis S, Karamanoli K, Vokou D, Karpouzas DG. Factors Structuring the Epiphytic Archaeal and Fungal Communities in a Semi-arid Mediterranean Ecosystem. MICROBIAL ECOLOGY 2021; 82:638-651. [PMID: 33594547 DOI: 10.1007/s00248-021-01712-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
The phyllosphere microbiome exerts a strong effect on plants' productivity, and its composition is determined by various factors. To date, most phyllosphere studies have focused on bacteria, while fungi and especially archaea have been overlooked. We studied the effects of plant host and season on the abundance and diversity of the epiphytic archaeal and fungal communities in a typical semi-arid Mediterranean ecosystem. We collected leaves in two largely contrasting seasons (summer and winter) from eight perennial species of varying attributes which could be grouped into the following: (i) high-canopy, evergreen sclerophyllοus shrubs with leathery leaves, and low-canopy, either semi-deciduous shrubs or non-woody perennials with non-leathery leaves, and (ii) aromatic and non-aromatic plants. We determined the abundance of epiphytic Crenarchaea, total fungi, Alternaria and Cladosporium (main airborne fungi) via q-PCR and the structure of the epiphytic archaeal and fungal communities via amplicon sequencing. We observed a strong seasonal effect with all microbial groups examined showing higher abundance in summer. Plant host and season were equally important determinants of the composition of the fungal community consisted mostly of Ascomycota, with Hypocreales dominating in winter and Capnodiales and Pleosporales in summer. In contrast, the archaeal community showed plant host driven patterns dominated by the Soil Crenarchaeotic Group (SCG) and Aenigmarchaeota. Plant habit and aromatic nature exhibited filtering effects only on the epiphytic fungal communities. Our study provides a first in-depth analysis of the key determinants shaping the phyllosphere archaeal and fungal communities of a semi-arid Mediterranean ecosystem.
Collapse
Affiliation(s)
- A Katsoula
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - S Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - K Karamanoli
- School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - D Vokou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - D G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
13
|
Pérez D, Lie TT, Weber CC. Operationalization of a microbial electrolysis cell: The interaction of the primary factors for energy storage efficiency. BIORESOURCE TECHNOLOGY 2021; 326:124788. [PMID: 33561662 DOI: 10.1016/j.biortech.2021.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Microbial electrolysis cells have attracted attention as a method to enhance anaerobic digesters' performance. However, optimization of individual factors is not directly transferrable among systems as many are intimately linked and influenced by the system design, influent, and inoculum. To avoid this, here the effects and interactions between the relative electrode size, hydraulic retention time (HRT), and voltage imposed have been explored within a pair of otherwise identical reactors. Methane production has a positive correlation with the applied voltage, reaching 12.9 mLCH4 L-1h-1 with 10 days HRT and 1000 mV, also achieving 35% energy storage efficiency, despite the higher electrical input. Shorter HRTs led to bacterial washouts, reducing the methane production below 10 mLCH4 L-1h-1. Contour plots were constructed to relate the energy storage efficiency with operational conditions changes. These highlighted the benefits of using a relatively larger cathode than anode for improving energy storage efficiency.
Collapse
Affiliation(s)
- Danilo Pérez
- School of Engineering, Computer and Mathematical Science, Auckland University of Technology, Auckland, New Zealand.
| | - Tek T Lie
- School of Engineering, Computer and Mathematical Science, Auckland University of Technology, Auckland, New Zealand
| | - Cameron C Weber
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Bashir AK, Wink L, Duller S, Schwendner P, Cockell C, Rettberg P, Mahnert A, Beblo-Vranesevic K, Bohmeier M, Rabbow E, Gaboyer F, Westall F, Walter N, Cabezas P, Garcia-Descalzo L, Gomez F, Malki M, Amils R, Ehrenfreund P, Monaghan E, Vannier P, Marteinsson V, Erlacher A, Tanski G, Strauss J, Bashir M, Riedo A, Moissl-Eichinger C. Taxonomic and functional analyses of intact microbial communities thriving in extreme, astrobiology-relevant, anoxic sites. MICROBIOME 2021; 9:50. [PMID: 33602336 PMCID: PMC7893877 DOI: 10.1186/s40168-020-00989-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Extreme terrestrial, analogue environments are widely used models to study the limits of life and to infer habitability of extraterrestrial settings. In contrast to Earth's ecosystems, potential extraterrestrial biotopes are usually characterized by a lack of oxygen. METHODS In the MASE project (Mars Analogues for Space Exploration), we selected representative anoxic analogue environments (permafrost, salt-mine, acidic lake and river, sulfur springs) for the comprehensive analysis of their microbial communities. We assessed the microbiome profile of intact cells by propidium monoazide-based amplicon and shotgun metagenome sequencing, supplemented with an extensive cultivation effort. RESULTS The information retrieved from microbiome analyses on the intact microbial community thriving in the MASE sites, together with the isolation of 31 model microorganisms and successful binning of 15 high-quality genomes allowed us to observe principle pathways, which pinpoint specific microbial functions in the MASE sites compared to moderate environments. The microorganisms were characterized by an impressive machinery to withstand physical and chemical pressures. All levels of our analyses revealed the strong and omnipresent dependency of the microbial communities on complex organic matter. Moreover, we identified an extremotolerant cosmopolitan group of 34 poly-extremophiles thriving in all sites. CONCLUSIONS Our results reveal the presence of a core microbiome and microbial taxonomic similarities between saline and acidic anoxic environments. Our work further emphasizes the importance of the environmental, terrestrial parameters for the functionality of a microbial community, but also reveals a high proportion of living microorganisms in extreme environments with a high adaptation potential within habitability borders. Video abstract.
Collapse
Affiliation(s)
- Alexandra Kristin Bashir
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- Department of Microbiology and Archaea Center, University of Regensburg, Regensburg, Germany
| | - Lisa Wink
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Stefanie Duller
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Petra Schwendner
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Charles Cockell
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Petra Rettberg
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Kristina Beblo-Vranesevic
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Maria Bohmeier
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Elke Rabbow
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - Frederic Gaboyer
- Centre de Biophysique Moléculaire, Centre National de la Recherché Scientifique (CNRS), Orléans, France
| | - Frances Westall
- Centre de Biophysique Moléculaire, Centre National de la Recherché Scientifique (CNRS), Orléans, France
| | | | | | - Laura Garcia-Descalzo
- Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - Felipe Gomez
- Instituto Nacional de Técnica Aeroespacial – Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - Mustapha Malki
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Euan Monaghan
- Leiden Observatory, Universiteit Leiden, Leiden, The Netherlands
| | | | - Viggo Marteinsson
- MATIS, Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - George Tanski
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit, Potsdam, Germany
| | - Jens Strauss
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Unit, Potsdam, Germany
| | - Mina Bashir
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Graz, Austria
| | - Andreas Riedo
- Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, Leiden, The Netherlands
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
15
|
Molecular Evidence for an Active Microbial Methane Cycle in Subsurface Serpentinite-Hosted Groundwaters in the Samail Ophiolite, Oman. Appl Environ Microbiol 2021; 87:AEM.02068-20. [PMID: 33127818 DOI: 10.1128/aem.02068-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Serpentinization can generate highly reduced fluids replete with hydrogen (H2) and methane (CH4), potent reductants capable of driving microbial methanogenesis and methanotrophy, respectively. However, CH4 in serpentinized waters is thought to be primarily abiogenic, raising key questions about the relative importance of methanogens and methanotrophs in the production and consumption of CH4 in these systems. Herein, we apply molecular approaches to examine the functional capability and activity of microbial CH4 cycling in serpentinization-impacted subsurface waters intersecting multiple rock and water types within the Samail Ophiolite of Oman. Abundant 16S rRNA genes and transcripts affiliated with the methanogenic genus Methanobacterium were recovered from the most alkaline (pH, >10), H2- and CH4-rich subsurface waters. Additionally, 16S rRNA genes and transcripts associated with the aerobic methanotrophic genus Methylococcus were detected in wells that spanned varied fluid geochemistry. Metagenomic sequencing yielded genes encoding homologs of proteins involved in the hydrogenotrophic pathway of microbial CH4 production and in microbial CH4 oxidation. Transcripts of several key genes encoding methanogenesis/methanotrophy enzymes were identified, predominantly in communities from the most hyperalkaline waters. These results indicate active methanogenic and methanotrophic populations in waters with hyperalkaline pH in the Samail Ophiolite, thereby supporting a role for biological CH4 cycling in aquifers that undergo low-temperature serpentinization.IMPORTANCE Serpentinization of ultramafic rock can generate conditions favorable for microbial methane (CH4) cycling, including the abiotic production of hydrogen (H2) and possibly CH4 Systems of low-temperature serpentinization are geobiological targets due to their potential to harbor microbial life and ubiquity throughout Earth's history. Biomass in fracture waters collected from the Samail Ophiolite of Oman, a system undergoing modern serpentinization, yielded DNA and RNA signatures indicative of active microbial methanogenesis and methanotrophy. Intriguingly, transcripts for proteins involved in methanogenesis were most abundant in the most highly reacted waters that have hyperalkaline pH and elevated concentrations of H2 and CH4 These findings suggest active biological methane cycling in serpentinite-hosted aquifers, even under extreme conditions of high pH and carbon limitation. These observations underscore the potential for microbial activity to influence the isotopic composition of CH4 in these systems, which is information that could help in identifying biosignatures of microbial activity on other planets.
Collapse
|
16
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
17
|
Mutschlechner M, Praeg N, Illmer P. Soil-Derived Inocula Enhance Methane Production and Counteract Common Process Failures During Anaerobic Digestion. Front Microbiol 2020; 11:572759. [PMID: 33193175 PMCID: PMC7606279 DOI: 10.3389/fmicb.2020.572759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/14/2020] [Indexed: 02/01/2023] Open
Abstract
Although soil-borne methanogens are known to be highly diverse and adapted to extreme environments, their application as potential (anaerobic) inocula to improve anaerobic digestion has not been investigated until now. The present study aimed at evaluating if soil-derived communities can be beneficial for biogas (methane, CH4) production and endure unfavorable conditions commonly associated with digestion failure. Nine study sites were chosen and tested for suitability as inoculation sources to improve biogas production via in situ measurements (CH4 fluxes, physical and chemical soil properties, and abundance of methanogens) and during a series of anaerobic digestions with (a) combinations of both sterile or unsterile soil and diluted fermenter sludge, and (b) pH-, acetate-, propionate-, and ammonium-induced disturbance. Amplicon sequencing was performed to assess key microbial communities pivotal for successful biogas production. Four out of nine tested soil inocula exerted sufficient methanogenic activity and repeatedly allowed satisfactory CH4/biogas production even under deteriorated conditions. Remarkably, the significantly highest CH4 production was observed using unsterile soil combined with sterile sludge, which coincided with both a higher relative abundance of methanogens and predicted genes involved in CH4 metabolism in these variants. Different bacterial and archaeal community patterns depending on the soil/sludge combinations and disturbance variations were established and these patterns significantly impacted CH4 production. Methanosarcina spp. seemed to play a key role in CH4 formation and prevailed even under stressed conditions. Overall, the results provided evidence that soil-borne methanogens can be effective in enhancing digestion performance and stability and, thus, harbor vast potential for further exploitation.
Collapse
Affiliation(s)
| | - Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Higgins PM, Cockell CS. A bioenergetic model to predict habitability, biomass and biosignatures in astrobiology and extreme conditions. J R Soc Interface 2020; 17:20200588. [PMID: 33081642 PMCID: PMC7653372 DOI: 10.1098/rsif.2020.0588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ([Formula: see text]) and total methane production ([Formula: see text]) despite an increase in peak growth rates ([Formula: see text]) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Collapse
Affiliation(s)
- P. M. Higgins
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - C. S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Perez D, Lie TT, Weber CC. Relative electrode size and organic load effects on the energy storage efficiency of microbial electrolysis cells. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Seto M, Noguchi K, Cappellen PV. Potential for Aerobic Methanotrophic Metabolism on Mars. ASTROBIOLOGY 2019; 19:1187-1195. [PMID: 31173512 PMCID: PMC6785171 DOI: 10.1089/ast.2018.1943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Observational evidence supports the presence of methane (CH4) in the martian atmosphere on the order of parts per billion by volume (ppbv). Here, we assess whether aerobic methanotrophy is a potentially viable metabolism in the martian upper regolith, by calculating metabolic energy gain rates under assumed conditions of martian surface temperature, pressure, and atmospheric composition. Using kinetic parameters for 19 terrestrial aerobic methanotrophic strains, we show that even under the imposed low temperature and pressure extremes (180-280 K and 6-11 hPa), methane oxidation by oxygen (O2) should in principle be able to generate the minimum energy production rate required to support endogenous metabolism (i.e., cellular maintenance). Our results further indicate that the corresponding metabolic activity would be extremely low, with cell doubling times in excess of 4000 Earth years at the present-day ppbv-level CH4 mixing ratios in the atmosphere of Mars. Thus, while aerobic methanotrophic microorganisms similar to those found on Earth could theoretically maintain their vital functions, they are unlikely to constitute prolific members of hypothetical martian soil communities.
Collapse
Affiliation(s)
- Mayumi Seto
- Department of Chemistry, Biology, and Environmental Sciences, Faculty of Science, Nara Women's University, Nara, Japan
| | - Katsuyuki Noguchi
- Department of Chemistry, Biology, and Environmental Sciences, Faculty of Science, Nara Women's University, Nara, Japan
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Department of Earth and Environmental Sciences, Water Institute, University of Waterloo, Waterloo, Canada
| |
Collapse
|
21
|
Wiseschart A, Mhuantong W, Tangphatsornruang S, Chantasingh D, Pootanakit K. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol 2019; 19:144. [PMID: 31248378 PMCID: PMC6598295 DOI: 10.1186/s12866-019-1521-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Due to the cave oligotrophic environment, this habitat presents a challenge for microorganisms to colonize and thrive. However, it has been well documented that microorganisms play important roles in cave development. Survival of microbes in this unique habitat likely involves a broad range of adaptive capabilities. Recently, cave microbiomes all over the world are of great scientific interest. However, the majority of investigations focused mostly on small subunit ribosomal RNA (16S rRNA) gene, leaving the ecological role of the microbial community largely unknown. Here, we are particularly interested in exploring the taxonomic composition and metabolic potential of microorganisms in soil from Manao-Pee cave, a subterranean limestone cave in the western part of Thailand, by using high-throughput shotgun metagenomic sequencing. Results From taxonomic composition analysis using ribosomal RNA genes (rRNA), the results confirmed that Actinobacteria (51.2%) and Gammaproteobacteria (24.4%) were the dominant bacterial groups in the cave soil community. Metabolic potential analysis, based on six functional modules of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, revealed that functional genes involved in microbial metabolisms are highly represented in this community (40.6%). To better understand how microbes thrive under unfavorable cave condition, we focused on microbial energy metabolism. The results showed that microbial genes involved in oxidative phosphorylation were the most dominant (28.8%) in Manao-Pee cave, and were followed by methane metabolism (20.5%), carbon fixation (16.0%), nitrogen metabolism (14.7%), and sulfur metabolism (6.3%). In addition, microbial genes involved in xenobiotic biodegradation (26 pathways) and in production of secondary metabolites (27 pathways) were also identified. Conclusion In addition to providing information on microbial diversity, we also gained insights into microbial adaptations and survival strategies under cave conditions. Based on rRNA genes, the results revealed that bacteria belonging to the Actinobacteria and Gammaproteobacteria were the most abundant in this community. From metabolic potential analysis, energy and nutrient sources that sustain diverse microbial population in this community might be atmospheric gases (methane, carbon dioxide, nitrogen), inorganic sulfur, and xenobiotic compounds. In addition, the presence of biosynthetic pathways of secondary metabolites suggested that they might play important ecological roles in the cave microbiome. Electronic supplementary material The online version of this article (10.1186/s12866-019-1521-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Apirak Wiseschart
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phuttamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Duriya Chantasingh
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 133 Thailand Science Park, Paholyothin Rd, Klong 1, Klongluang, Pathumthani, 12120, Thailand
| | - Kusol Pootanakit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phuttamonthon 4 Rd, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
22
|
Serrano P, Alawi M, de Vera JP, Wagner D. Response of Methanogenic Archaea from Siberian Permafrost and Non-permafrost Environments to Simulated Mars-like Desiccation and the Presence of Perchlorate. ASTROBIOLOGY 2019; 19:197-208. [PMID: 30742498 DOI: 10.1089/ast.2018.1877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Numerous preflight investigations were necessary prior to the exposure experiment BIOMEX on the International Space Station to test the basic potential of selected microorganisms to resist or even to be active under Mars-like conditions. In this study, methanogenic archaea, which are anaerobic chemolithotrophic microorganisms whose lifestyle would allow metabolism under the conditions on early and recent Mars, were analyzed. Some strains from Siberian permafrost environments have shown a particular resistance. In this investigation, we analyzed the response of three permafrost strains (Methanosarcina soligelidi SMA-21, Candidatus Methanosarcina SMA-17, Candidatus Methanobacterium SMA-27) and two related strains from non-permafrost environments (Methanosarcina mazei, Methanosarcina barkeri) to desiccation conditions (-80°C for 315 days, martian regolith analog simulants S-MRS and P-MRS, a 128-day period of simulated Mars-like atmosphere). Exposure of the different methanogenic strains to increasing concentrations of magnesium perchlorate allowed for the study of their metabolic shutdown in a Mars-relevant perchlorate environment. Survival and metabolic recovery were analyzed by quantitative PCR, gas chromatography, and a new DNA-extraction method from viable cells embedded in S-MRS and P-MRS. All strains survived the two Mars-like desiccating scenarios and recovered to different extents. The permafrost strain SMA-27 showed an increased methanogenic activity by at least 10-fold after deep-freezing conditions. The methanogenic rates of all strains did not decrease significantly after 128 days S-MRS exposure, except for SMA-27, which decreased 10-fold. The activity of strains SMA-17 and SMA-27 decreased after 16 and 60 days P-MRS exposure. Non-permafrost strains showed constant survival and methane production when exposed to both desiccating scenarios. All strains showed unaltered methane production when exposed to the perchlorate concentration reported at the Phoenix landing site (2.4 mM) or even higher concentrations. We conclude that methanogens from (non-)permafrost environments are suitable candidates for potential life in the martian subsurface and therefore are worthy of study after space exposure experiments that approach Mars-like surface conditions.
Collapse
Affiliation(s)
- Paloma Serrano
- 1 GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- 2 AWI, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Mashal Alawi
- 1 GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
| | - Jean-Pierre de Vera
- 3 German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Dirk Wagner
- 1 GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Potsdam, Germany
- 4 University of Potsdam, Institute of Geosciences, Potsdam, Germany
| |
Collapse
|
23
|
Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors. ENERGIES 2018. [DOI: 10.3390/en11061344] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Taubner RS, Pappenreiter P, Zwicker J, Smrzka D, Pruckner C, Kolar P, Bernacchi S, Seifert AH, Krajete A, Bach W, Peckmann J, Paulik C, Firneis MG, Schleper C, Rittmann SKMR. Biological methane production under putative Enceladus-like conditions. Nat Commun 2018; 9:748. [PMID: 29487311 PMCID: PMC5829080 DOI: 10.1038/s41467-018-02876-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
The detection of silica-rich dust particles, as an indication for ongoing hydrothermal activity, and the presence of water and organic molecules in the plume of Enceladus, have made Saturn's icy moon a hot spot in the search for potential extraterrestrial life. Methanogenic archaea are among the organisms that could potentially thrive under the predicted conditions on Enceladus, considering that both molecular hydrogen (H2) and methane (CH4) have been detected in the plume. Here we show that a methanogenic archaeon, Methanothermococcus okinawensis, can produce CH4 under physicochemical conditions extrapolated for Enceladus. Up to 72% carbon dioxide to CH4 conversion is reached at 50 bar in the presence of potential inhibitors. Furthermore, kinetic and thermodynamic computations of low-temperature serpentinization indicate that there may be sufficient H2 gas production to serve as a substrate for CH4 production on Enceladus. We conclude that some of the CH4 detected in the plume of Enceladus might, in principle, be produced by methanogens.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1090, Vienna, Austria
- Department of Astrophysics, Universität Wien, 1180, Vienna, Austria
| | - Patricia Pappenreiter
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, 4040, Linz, Austria
| | - Jennifer Zwicker
- Department of Geodynamics and Sedimentology, Center for Earth Sciences, Universität Wien, 1090, Vienna, Austria
| | - Daniel Smrzka
- Department of Geodynamics and Sedimentology, Center for Earth Sciences, Universität Wien, 1090, Vienna, Austria
| | - Christian Pruckner
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1090, Vienna, Austria
| | - Philipp Kolar
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1090, Vienna, Austria
| | | | | | | | - Wolfgang Bach
- Geoscience Department, Universität Bremen, 28359, Bremen, Germany
| | - Jörn Peckmann
- Department of Geodynamics and Sedimentology, Center for Earth Sciences, Universität Wien, 1090, Vienna, Austria
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, 20146, Hamburg, Germany
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, 4040, Linz, Austria
| | - Maria G Firneis
- Department of Astrophysics, Universität Wien, 1180, Vienna, Austria
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1090, Vienna, Austria
| | - Simon K-M R Rittmann
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Wang HL, Zhang J, Sun QL, Lian C, Sun L. A comparative study revealed first insights into the diversity and metabolisms of the microbial communities in the sediments of Pacmanus and Desmos hydrothermal fields. PLoS One 2017; 12:e0181048. [PMID: 28704556 PMCID: PMC5507547 DOI: 10.1371/journal.pone.0181048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 06/26/2017] [Indexed: 12/02/2022] Open
Abstract
Currently, little is known about the microbial diversity in the sediments of Pacmanus and Desmos hydrothermal fields in Manus Basin. In this study, Illumina-based sequencing of 16S rRNA gene amplicons and metagenomic analysis were conducted to investigate the microbial populations and metabolic profiles in the sediments from four different regions in Pacmanus and Desmos hydrothermal fields. It was found that Gammaproteobacteria and Thaumarchaeota were the most abundant bacterial and archaeal populations, respectively. The autotrophic prokaryotes in the four communities probably fixed CO2 via four major pathways, i.e. Calvin-Benson-Bassham cycle, reductive acetyl-CoA cycle, rTCA cycle, and 3-hydroxypropionate/4-hydroxybutyrate cycle. Ammonia-oxidizing Thaumarchaeota, nitrifiers, denitrifiers, and sulfur oxidizers belonging to the subgroups of Proteobacteria (e.g., alpha, beta, gamma, and epsilon), Nitrospira, and Nitrospina, and sulfate-reducing Desulfobacterales likely played critical roles in nitrogen and sulfur cycling, in which ammonia, sulfur compounds, and hydrogen could be utilized as potential energy sources. These findings revealed new insights into the operational mechanism of the microbial communities associated with Pacmanus and Desmos hydrothermal fields.
Collapse
Affiliation(s)
- Hai-liang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qing-lei Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chao Lian
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
26
|
Guneratnam AJ, Ahern E, FitzGerald JA, Jackson SA, Xia A, Dobson ADW, Murphy JD. Study of the performance of a thermophilic biological methanation system. BIORESOURCE TECHNOLOGY 2017; 225:308-315. [PMID: 27898322 DOI: 10.1016/j.biortech.2016.11.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 05/07/2023]
Abstract
This study investigated the operation of ex-situ biological methanation at two thermophilic temperatures (55°C and 65°C). Methane composition of 85-88% was obtained and volumetric productivities of 0.45 and 0.4LCH4/Lreactor were observed at 55°C and 65°C after 24h respectively. It is postulated that at 55°C the process operated as a mixed culture as the residual organic substrates in the starting inoculum were still available. These were consumed prior to the assessment at 65°C; thus the methanogens were now dependent on gaseous substrates CO2 and H2. The experiment was repeated at 65°C with fresh inoculum (a mixed culture); methane composition and volumetric productivity of 92% and 0.46LCH4/Lreactor were achieved in 24h. Methanothermobacter species represent likely and resilient candidates for thermophilic biogas upgrading.
Collapse
Affiliation(s)
| | - Eoin Ahern
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland
| | - Jamie A FitzGerald
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland; School of Microbiology, University College Cork, Ireland
| | | | - Ao Xia
- Key Laboratory of Low-grade Energy Utilisation Technologies and Systems, Chongqing University, Chongqing 400044, China
| | | | - Jerry D Murphy
- The MaREI Centre, Environmental Research Institute, University College Cork, Ireland; School of Engineering, University College Cork, Ireland.
| |
Collapse
|
27
|
Moissl-Eichinger C, Cockell C, Rettberg P. Venturing into new realms? Microorganisms in space. FEMS Microbiol Rev 2016; 40:722-37. [PMID: 27354346 DOI: 10.1093/femsre/fuw015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
One of the biggest challenges of science is the determination of whether extraterrestrial life exists. Although potential habitable areas might be available for complex life, it is more likely that microbial life could exist in space. Many extremotolerant and extremophilic microbes have been found to be able to withstand numerous, combined environmental factors, such as high or low temperatures and pressures, high-salt conditions, high doses of radiation, desiccation or nutrient limitations. They may even survive the transit from one planet to another. Terrestrial Mars-analogue sites are one focus of researchers, in order to understand the microbial diversity in preparation for upcoming space missions aimed at the detection of life. However, such missions could also pose a risk with respect to contamination of the extraterrestrial environment by accidentally transferred terrestrial microorganisms. Closer to the Earth, the International Space Station is the most enclosed habitat, where humans work and live-and with them numerous microorganisms. It is still unknown how microbes adapt to this environment, possibly even creating a risk for the crew. Information on the microbiology of the ISS will have an impact on the planning and implementation of long-term human spaceflights in order to ensure a safe, stable and balanced microbiome on board.
Collapse
Affiliation(s)
- Christine Moissl-Eichinger
- Department for Internal Medicine, Medical University of Graz, 8036 Graz, Austria BioTechMed Graz, 8010 Graz, Austria
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH10 4EP, UK
| | - Petra Rettberg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
28
|
Taubner RS, Rittmann SKMR. Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens. Front Microbiol 2016; 7:532. [PMID: 27199898 PMCID: PMC4850170 DOI: 10.3389/fmicb.2016.00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Hydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. Methanogens exhibit extraordinary ecological, biochemical, and physiological characteristics and possess a huge biotechnological potential. Yet, the only possibility to assess the methane (CH4) production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH4. In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH4 production potential we developed a novel method for indirect quantification of the volumetric CH4 production rate by measuring the volumetric water production rate. This method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was estimated by determining the difference in mass increase in a quasi-isobaric setting. This novel CH4 quantification method is an accurate and precise analytical technique, which can be used to rapidly screen pure cultures of methanogens regarding their volumetric CH4 evolution rate. It is a cost effective alternative determining CH4 production of methanogens over CH4 quantification by using gas chromatography, especially if applied as a high throughput quantification method. Eventually, the method can be universally applied for quantification of CH4 production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Research Platform: ExoLife, University of ViennaVienna, Austria; Institute of Astrophysics, University of ViennaVienna, Austria; Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Simon K-M R Rittmann
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna Vienna, Austria
| |
Collapse
|