1
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Cohen ZR, Todd ZR, Maibaum L, Catling DC, Black RA. Stabilization of Prebiotic Vesicles by Peptides Depends on Sequence and Chirality: A Mechanism for Selection of Protocell-Associated Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8971-8980. [PMID: 38629792 DOI: 10.1021/acs.langmuir.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Cells require oligonucleotides and polypeptides with specific, homochiral sequences to perform essential functions, but it is unclear how such oligomers were selected from random sequences at the origin of life. Cells were probably preceded by simple compartments such as fatty acid vesicles, and oligomers that increased the stability, growth, or division of vesicles could have thereby increased in frequency. We therefore tested whether prebiotic peptides alter the stability or growth of vesicles composed of a prebiotic fatty acid. We find that three of 15 dipeptides tested reduce salt-induced flocculation of vesicles. All three contain leucine, and increasing their length increases the efficacy. Also, leucine-leucine but not alanine-alanine increases the size of vesicles grown by multiple additions of micelles. In a molecular simulation, leucine-leucine docks to the membrane, with the side chains inserted into the hydrophobic core of the bilayer, while alanine-alanine fails to dock. Finally, the heterochiral forms of leucine-leucine, at a high concentration, rapidly shrink the vesicles and make them leakier and less stable to high pH than the homochiral forms do. Thus, prebiotic peptide-membrane interactions influence the flocculation, growth, size, leakiness, and pH stability of prebiotic vesicles, with differential effects due to sequence, length, and chirality. These differences could lead to a population of vesicles enriched for peptides with beneficial sequence and chirality, beginning selection for the functional oligomers that underpin life.
Collapse
Affiliation(s)
- Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Zoe R Todd
- Department of Earth and Space Science, University of Washington, Seattle, Washington 98195, United States
| | - Lutz Maibaum
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David C Catling
- Department of Earth and Space Science, University of Washington, Seattle, Washington 98195, United States
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Mandal R, Ghosh A, Rout NK, Prasad M, Hazra B, Sar S, Das S, Datta A, Tarafdar PK. Self-assembled prebiotic amphiphile-mixture exhibits tunable catalytic properties. Org Biomol Chem 2023; 21:4473-4481. [PMID: 37194351 DOI: 10.1039/d3ob00606a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protocellular surface formation via the self-assembly of amphiphiles, and catalysis by simple peptides/proto-RNA are two important pillars in the evolution of protocells. To hunt for prebiotic self-assembly-supported catalytic reactions, we thought that amino-acid-based amphiphiles might play an important role. In this paper, we investigate the formation of histidine-based and serine-based amphiphiles under mild prebiotic conditions from amino acid : fatty alcohol and amino acid : fatty acid mixtures. The histidine-based amphiphiles were able to catalyze hydrolytic reactions at the self-assembled surface (with a rate increase of ∼1000-fold), and the catalytic ability can be tuned by linkage of the fatty carbon part to histidine (N-acylated vs. O-acylated). Moreover, the presence of cationic serine-based amphiphiles on the surface enhances the catalytic efficiency by another ∼2-fold, whereas the presence of anionic aspartic acid-based amphiphiles reduces the catalytic activity. Ester partitioning into the surface, reactivity, and the accumulation of liberated fatty acid explain the substrate selectivity of the catalytic surface, where the hexyl esters were found to be more hydrolytic than other fatty acyl esters. Di-methylation of the -NH2 of OLH increases the catalytic efficacy by a further ∼2-fold, whereas trimethylation reduces the catalytic ability. The self-assembly, charge-charge repulsion, and the H-bonding to the ester carbonyl are likely to be responsible for the superior (∼2500-fold higher rate than the pre-micellar OLH) catalytic efficiency of O-lauryl dimethyl histidine (OLDMH). Thus, prebiotic amino-acid-based surfaces served as an efficient catalyst that exhibits regulation of catalytic function, substrate selectivity, and further adaptability to perform bio-catalysis.
Collapse
Affiliation(s)
- Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Anupam Ghosh
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Nilesh K Rout
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Sanu Sar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| | - Ayan Datta
- Indian Association for the Cultivation of Science, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, India.
| |
Collapse
|
4
|
Hazra B, Mondal A, Prasad M, Gayen S, Mandal R, Sardar A, Tarafdar PK. Lipidated Lysine and Fatty Acids Assemble into Protocellular Membranes to Assist Regioselective Peptide Formation: Correlation to the Natural Selection of Lysine over Nonproteinogenic Lower Analogues. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15422-15432. [PMID: 36450098 DOI: 10.1021/acs.langmuir.2c02849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The self-assembly of prebiotically plausible amphiphiles (fatty acids) to form a bilayer membrane for compartmentalization is an important factor during protocellular evolution. Such fatty acid-based membranes assemble at relatively high concentrations, and they lack robust stability. We have demonstrated that a mixture of lipidated lysine (cationic) and prebiotic fatty acids (decanoic acid, anionic) can form protocellular membranes (amino acid-based membranes) at low concentrations via electrostatic, hydrogen bonding, and hydrophobic interactions. The formation of vesicular membranes was characterized by dynamic light scattering (DLS), pyrene and Nile Red partitioning, cryo-transmission electron microscopy (TEM) images, and glucose encapsulation studies. The lipidated nonproteinogenic analogues of lysine (Lys), such as ornithine (Orn) and 2,4-diaminobutyric acid (Dab), also form membranes with decanoate (DA). Time-dependent turbidimetric and 1H NMR studies suggested that the Lys-based membrane is more stable than the membranes prepared from nonproteinogenic lower analogues. The Lys-based membrane embeds a model acylating agent (aminoacyl-tRNA mimic) and facilitates the colocalization of substrates to support regioselective peptide formation via the α-amine of Lys. These membranes thereby assist peptide formation and control the positioning of the reactants (model acylating agent and -NH2 of amino acids) to initiate biologically relevant reactions during early evolution.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Anoy Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Soumajit Gayen
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Avijit Sardar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
5
|
Aliphatic Aldehydes in the Earth's Crust-Remains of Prebiotic Chemistry? LIFE (BASEL, SWITZERLAND) 2022; 12:life12070925. [PMID: 35888015 PMCID: PMC9319801 DOI: 10.3390/life12070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/03/2022]
Abstract
The origin of life is a mystery that has not yet been solved in the natural sciences. Some promising interpretative approaches are related to hydrothermal activities. Hydrothermal environments contain all necessary elements for the development of precursor molecules. There are surfaces with possible catalytic activity, and wide ranges of pressure and temperature conditions. The chemical composition of hydrothermal fluids together with periodically fluctuating physical conditions should open up multiple pathways towards prebiotic molecules. In 2017, we detected potentially prebiotic organic substances, including a homologous series of aldehydes in Archean quartz crystals from Western Australia, more than 3 billion years old. In order to approach the question of whether the transformation of inorganic into organic substances is an ongoing process, we investigated a drill core from the geologically young Wehr caldera in Germany at a depth of 1000 m. Here, we show the existence of a similar homologous series of aldehydes (C8 to C16) in the fluid inclusions of the drill core calcites, a finding that supports the thesis that hydrothermal environments could possibly be the material source for the origin of life.
Collapse
|
6
|
Mayer C. Spontaneous Formation of Functional Structures in Messy Environments. Life (Basel) 2022; 12:720. [PMID: 35629387 PMCID: PMC9148140 DOI: 10.3390/life12050720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/14/2023] Open
Abstract
Even though prebiotic chemistry initially deals with simple molecules, its composition rapidly gains complexity with oligomerization. Starting with, e.g., 20 monomers (such as the 20 proteinogenic amino acids), we expect 400 different dimers, 3,200,000 pentamers, or more than 1013 decamers. Hence, the starting conditions are very messy but also form a very powerful pool of potentially functional oligomers. A selecting structure (a "selector" such as membrane multilayers or vesicles) may pick and accumulate those molecules from the pool that fulfill a simple function (such as the suitability to integrate into a bilayer membrane). If this "selector" is, in turn, subject to a superimposed selection in a periodic process, the accumulated oligomers may be further trimmed to fulfill more complex functions, which improve the survival rate of the selectors. Successful oligomers will be passed from generation to generation and further improved in subsequent steps. After thousands of generations, the selector, together with its integrated oligomers, can form a functional unit of considerable order and complexity. The actual power of this process of random formation and selection has already been shown in laboratory experiments. In this concept paper, earlier results are summarized and brought into a new context.
Collapse
Affiliation(s)
- Christian Mayer
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
7
|
Dávila MJ, Mayer C. Membrane Structure Obtained in an Experimental Evolution Process. Life (Basel) 2022; 12:life12020145. [PMID: 35207433 PMCID: PMC8875328 DOI: 10.3390/life12020145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
Recently, an evolution experiment was carried out in a cyclic process, which involved periodic vesicle formation in combination with peptide and vesicle selection. As an outcome, an octapeptide (KSPFPFAA) was identified which rapidly integrated into the vesicle membrane and, according to its significant accumulation, is obviously connected to a particular advantage of the corresponding functionalized vesicle. Here we report a molecular dynamics study of the structural details of the functionalized vesicle membrane, which was a product of this evolution process and is connected to several survival mechanisms. In order to elucidate the particular advantage of this structure, we performed all-atom molecular dynamics simulations to examine structural changes and interactions of the peptide (KSPFPFAA) with the given octadecanoic acid/octadecylamine (1:1) bilayer under acidic conditions. The calculations clearly demonstrate the specific interactions between the peptide and the membrane and reveal the mechanisms leading to the improved vesicle survival.
Collapse
|
8
|
Xue M, Black RA, Cohen ZR, Roehrich A, Drobny GP, Keller SL. Binding of Dipeptides to Fatty Acid Membranes Explains Their Colocalization in Protocells but Does Not Select for Them Relative to Unjoined Amino Acids. J Phys Chem B 2021; 125:7933-7939. [PMID: 34283913 DOI: 10.1021/acs.jpcb.1c01485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipeptides, which consist of two amino acids joined by a peptide bond, have been shown to have catalytic functions. This observation leads to fundamental questions relevant to the origin of life. How could peptides have become colocalized with the first protocells? Which structural features would have determined the association of amino acids and peptides with membranes? Could the association of dipeptides with protocell membranes have driven molecular evolution, favoring dipeptides over individual amino acids? Using pulsed-field gradient nuclear magnetic resonance, we find that several prebiotic amino acids and dipeptides bind to prebiotic membranes. For amino acids, the side chains and carboxylate contribute to the interaction. For dipeptides, the extent of binding is generally less than that of the constituent amino acids, implying that other mechanisms would be necessary to drive molecular evolution. Nevertheless, our results are consistent with a scheme in which the building blocks of the biological polymers colocalized with protocells prior to the emergence of RNA and proteins.
Collapse
Affiliation(s)
- Mengjun Xue
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Adrienne Roehrich
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, Washington 98195 United States
| |
Collapse
|
9
|
Joshi MP, Sawant AA, Rajamani S. Spontaneous emergence of membrane-forming protoamphiphiles from a lipid-amino acid mixture under wet-dry cycles. Chem Sci 2021; 12:2970-2978. [PMID: 34164065 PMCID: PMC8179413 DOI: 10.1039/d0sc05650b] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Dynamic interplay between peptide synthesis and membrane assembly would have been crucial for the emergence of protocells on the prebiotic Earth. However, the effect of membrane-forming amphiphiles on peptide synthesis, under prebiotically plausible conditions, remains relatively unexplored. Here we discern the effect of a phospholipid on peptide synthesis using a non-activated amino acid, under wet-dry cycles. We report two competing processes simultaneously forming peptides and N-acyl amino acids (NAAs) in a single-pot reaction from a common set of reactants. NAA synthesis occurs via an ester-amide exchange, which is the first demonstration of this phenomenon in a lipid-amino acid system. Furthermore, NAAs self-assemble into vesicles at acidic pH, signifying their ability to form protocellular membranes under acidic geothermal conditions. Our work highlights the importance of exploring the co-evolutionary interactions between membrane assembly and peptide synthesis, having implications for the emergence of hitherto uncharacterized compounds of unknown prebiotic relevance.
Collapse
Affiliation(s)
- Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune Maharashtra 411008 India +91-020-25899790 +91-020-25908061
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune Maharashtra 411008 India +91-020-25899790 +91-020-25908061
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research Dr. Homi Bhabha Road Pune Maharashtra 411008 India +91-020-25899790 +91-020-25908061
| |
Collapse
|
10
|
AFM Images of Viroid-Sized Rings That Self-Assemble from Mononucleotides through Wet-Dry Cycling: Implications for the Origin of Life. Life (Basel) 2020; 10:life10120321. [PMID: 33266191 PMCID: PMC7760185 DOI: 10.3390/life10120321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
It is possible that early life relied on RNA polymers that served as ribozyme-like catalysts and for storing genetic information. The source of such polymers is uncertain, but previous investigations reported that wet–dry cycles simulating prebiotic hot springs provide sufficient energy to drive condensation reactions of mononucleotides to form oligomers. The aim of the study reported here was to visualize the products by atomic force microscopy. In addition to globular oligomers, ring-like structures ranging from 10–200 nm in diameter, with an average around 30–40 nm, were abundant, particularly when nucleotides capable of base pairing were present. The thickness of the rings was consistent with single stranded products, but some had thicknesses indicating base pair stacking. Others had more complex structures in the form of short polymer attachments and pairing of rings. These observations suggest the possibility that base-pairing may promote polymerization during wet–dry cycling followed by solvation of the rings. We conclude that RNA-like rings and structures could have been synthesized non-enzymatically on the prebiotic Earth, with sizes sufficient to fold into ribozymes and genetic molecules required for life to begin.
Collapse
|
11
|
Abstract
Most definitions of life assume that, at a minimum, life is a physical form of matter distinct from its environment at a lower state of entropy than its surroundings, using energy from the environment for internal maintenance and activity, and capable of autonomous reproduction. These assumptions cover all of life as we know it, though more exotic entities can be envisioned, including organic forms with novel biochemistries, dynamic inorganic matter, and self-replicating machines. The probability that any particular form of life will be found on another planetary body depends on the nature and history of that alien world. So the biospheres would likely be very different on a rocky planet with an ice-covered global ocean, a barren planet devoid of surface liquid, a frigid world with abundant liquid hydrocarbons, on a rogue planet independent of a host star, on a tidally locked planet, on super-Earths, or in long-lived clouds in dense atmospheres. While life at least in microbial form is probably pervasive if rare throughout the Universe, and technologically advanced life is likely much rarer, the chance that an alternative form of life, though not intelligent life, could exist and be detected within our Solar System is a distinct possibility.
Collapse
|
12
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Mayer C. Life in The Context of Order and Complexity. Life (Basel) 2020; 10:life10010005. [PMID: 31963637 PMCID: PMC7175320 DOI: 10.3390/life10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 11/17/2022] Open
Abstract
It is generally accepted that life requires structural complexity. However, a chaotic mixture of organic compounds like the one formed by extensive reaction sequences over time may be extremely complex, but could just represent a static asphalt-like dead end situation. Likewise, it is accepted that life requires a certain degree of structural order. However, even extremely ordered structures like mineral crystals show no tendency to be alive. So neither complexity nor order alone can characterize a living organism. In order to come close to life, and in order for life to develop to higher organisms, both conditions have to be fulfilled and advanced simultaneously. Only a combination of the two requirements, complexity and structural order, can mark the difference between living and dead matter. It is essential for the development of prebiotic chemistry into life and characterizes the course and the result of Darwinian evolution. For this reason, it is worthwhile to define complexity and order as an essential pair of characteristics of life and to use them as fundamental parameters to evaluate early steps in prebiotic development. A combination of high order and high complexity also represents a universal type of biosignature which could be used to identify unknown forms of life or remnants thereof.
Collapse
Affiliation(s)
- Christian Mayer
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
14
|
Vincent L, Berg M, Krismer M, Saghafi SS, Cosby J, Sankari T, Vetsigian K, Ii HJC, Baum DA. Chemical Ecosystem Selection on Mineral Surfaces Reveals Long-Term Dynamics Consistent with the Spontaneous Emergence of Mutual Catalysis. Life (Basel) 2019; 9:life9040080. [PMID: 31652727 PMCID: PMC6911371 DOI: 10.3390/life9040080] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022] Open
Abstract
How did chemicals first become organized into systems capable of self-propagation and adaptive evolution? One possibility is that the first evolvers were chemical ecosystems localized on mineral surfaces and composed of sets of molecular species that could catalyze each other’s formation. We used a bottom-up experimental framework, chemical ecosystem selection (CES), to evaluate this perspective and search for surface-associated and mutually catalytic chemical systems based on the changes in chemistry that they are expected to induce. Here, we report the results of preliminary CES experiments conducted using a synthetic “prebiotic soup” and pyrite grains, which yielded dynamical patterns that are suggestive of the emergence of mutual catalysis. While more research is needed to better understand the specific patterns observed here and determine whether they are reflective of self-propagation, these results illustrate the potential power of CES to test competing hypotheses for the emergence of protobiological chemical systems.
Collapse
Affiliation(s)
- Lena Vincent
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Michael Berg
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Mitchell Krismer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Samuel S Saghafi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Jacob Cosby
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Talia Sankari
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Kalin Vetsigian
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - H James Cleaves Ii
- Geophysical Laboratory, The Carnegie Institution for Science, Washington, DC 20015, USA.
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
- Blue Marble Space Institute for Science, Seattle, WA 97154, USA.
- Institute for Advanced Study, Princeton, NJ 08540, USA.
| | - David A Baum
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
15
|
Cornell CE, Black RA, Xue M, Litz HE, Ramsay A, Gordon M, Mileant A, Cohen ZR, Williams JA, Lee KK, Drobny GP, Keller SL. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc Natl Acad Sci U S A 2019; 116:17239-17244. [PMID: 31405964 PMCID: PMC6717294 DOI: 10.1073/pnas.1900275116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The membranes of the first protocells on the early Earth were likely self-assembled from fatty acids. A major challenge in understanding how protocells could have arisen and withstood changes in their environment is that fatty acid membranes are unstable in solutions containing high concentrations of salt (such as would have been prevalent in early oceans) or divalent cations (which would have been required for RNA catalysis). To test whether the inclusion of amino acids addresses this problem, we coupled direct techniques of cryoelectron microscopy and fluorescence microscopy with techniques of NMR spectroscopy, centrifuge filtration assays, and turbidity measurements. We find that a set of unmodified, prebiotic amino acids binds to prebiotic fatty acid membranes and that a subset stabilizes membranes in the presence of salt and Mg2+ Furthermore, we find that final concentrations of the amino acids need not be high to cause these effects; membrane stabilization persists after dilution as would have occurred during the rehydration of dried or partially dried pools. In addition to providing a means to stabilize protocell membranes, our results address the challenge of explaining how proteins could have become colocalized with membranes. Amino acids are the building blocks of proteins, and our results are consistent with a positive feedback loop in which amino acids bound to self-assembled fatty acid membranes, resulting in membrane stabilization and leading to more binding in turn. High local concentrations of molecular building blocks at the surface of fatty acid membranes may have aided the eventual formation of proteins.
Collapse
Affiliation(s)
- Caitlin E Cornell
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Roy A Black
- Department of Chemistry, University of Washington, Seattle, WA 98195;
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Mengjun Xue
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Helen E Litz
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Andrew Ramsay
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Moshe Gordon
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Alexander Mileant
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
- Biological Structure, Physics, and Design Graduate Program, University of Washington, Seattle, WA 98195
| | - Zachary R Cohen
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - James A Williams
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Sarah L Keller
- Department of Chemistry, University of Washington, Seattle, WA 98195;
| |
Collapse
|