1
|
Janović A, Maldener I, Menzel C, Parrett GA, Risser DD. The role of FraI in cell-cell communication and differentiation in the hormogonia-forming cyanobacterium Nostoc punctiforme. mSphere 2024; 9:e0051024. [PMID: 39037261 PMCID: PMC11351039 DOI: 10.1128/msphere.00510-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Multicellular cyanobacteria, like Nostoc punctiforme, rely on septal junctions for cell-cell communication, which is crucial for coordinating various physiological processes including differentiation of N2-fixing heterocysts, spore-like akinetes, and hormogonia-short, motile filaments important for dispersal. In this study, we functionally characterize a protein, encoded by gene Npun_F4142, which in a random mutagenesis approach, initially showed a motility-related function. The reconstructed Npun_F4142 knockout mutant exhibits further distinct phenotypic traits, including altered hormogonia formation with significant reduced motility, inability to differentiate heterocysts and filament fragmentation. For that reason, we named the protein FraI (fragmentation phenotype). The mutant displays severely impaired cell-cell communication, due to almost complete absence of the nanopore array in the septal cell wall, which is an essential part of the septal junctions. Despite lack of communication, hormogonia in the ΔfraI mutant maintain motility and phototactic behavior, even though less pronounced than the wild type (WT). This suggests an alternative mechanism for coordinated movement beyond septal junctions. Our study underscores the significance of FraI in nanopore formation and cell differentiation, and provides additional evidence for the importance of septal junction formation and communication in various differentiation traits of cyanobacteria. The findings contribute to a deeper understanding of the regulatory networks governing multicellular cyanobacterial behavior, with implications for broader insights into microbial multicellularity. IMPORTANCE The filament-forming cyanobacterium Nostoc punctiforme serves as a valuable model for studying cell differentiation, including the formation of nitrogen-fixing heterocysts and hormogonia. Hormogonia filaments play a crucial role in dispersal and plant colonization, providing a nitrogen source through atmospheric nitrogen fixation, thus holding promise for fertilizer-free agriculture. The coordination among the hormogonia cells enabling uniform movement toward the positive signal remains poorly understood. This study investigates the role of septal junction-mediated communication in hormogonia differentiation and motility, by studying a ΔfraI mutant with significantly impaired communication. Surprisingly, impaired communication does not abolish synchronized filament movement, suggesting an alternative coordination mechanism. These findings deepen our understanding of cyanobacterial biology and have broader implications for multicellular behavior in prokaryotes.
Collapse
Affiliation(s)
- Ana Janović
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Claudia Menzel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Gabriel A. Parrett
- Department of Biology, University of Colorado, Colorado Springs, Colorado, USA
| | - Douglas D. Risser
- Department of Biology, University of Colorado, Colorado Springs, Colorado, USA
| |
Collapse
|
2
|
Sarasa-Buisan C, Nieves-Morión M, Arévalo S, Helm RF, Sevilla E, Luque I, Fillat MF. FurC (PerR) contributes to the regulation of peptidoglycan remodeling and intercellular molecular transfer in the cyanobacterium Anabaena sp. strain PCC 7120. mBio 2024; 15:e0323123. [PMID: 38334377 PMCID: PMC10936207 DOI: 10.1128/mbio.03231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Microbial extracellular proteins and metabolites provide valuable information concerning how microbes adapt to changing environments. In cyanobacteria, dynamic acclimation strategies involve a variety of regulatory mechanisms, being ferric uptake regulator proteins as key players in this process. In the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, FurC (PerR) is a global regulator that modulates the peroxide response and several genes involved in photosynthesis and nitrogen metabolism. To investigate the possible role of FurC in shaping the extracellular environment of Anabaena, the analysis of the extracellular metabolites and proteins of a furC-overexpressing variant was compared to that of the wild-type strain. There were 96 differentially abundant proteins, 78 of which were found for the first time in the extracellular fraction of Anabaena. While these proteins belong to different functional categories, most of them are predicted to be secreted or have a peripheral location. Several stress-related proteins, including PrxA, flavodoxin, and the Dps homolog All1173, accumulated in the exoproteome of furC-overexpressing cells, while decreased levels of FurA and a subset of membrane proteins, including several export proteins and amiC gene products, responsible for nanopore formation, were detected. Direct repression by FurC of some of those genes, including amiC1 and amiC2, could account for odd septal nanopore formation and impaired intercellular molecular transfer observed in the furC-overexpressing variant. Assessment of the exometabolome from both strains revealed the release of two peptidoglycan fragments in furC-overexpressing cells, namely 1,6-anhydro-N-acetyl-β-D-muramic acid (anhydroMurNAc) and its associated disaccharide (β-D-GlcNAc-(1-4)-anhydroMurNAc), suggesting alterations in peptidoglycan breakdown and recycling.IMPORTANCECyanobacteria are ubiquitous photosynthetic prokaryotes that can adapt to environmental stresses by modulating their extracellular contents. Measurements of the organization and composition of the extracellular milieu provide useful information about cyanobacterial adaptive processes, which can potentially lead to biomimetic approaches to stabilizing biological systems to adverse conditions. Anabaena sp. strain PCC 7120 is a multicellular, nitrogen-fixing cyanobacterium whose intercellular molecular exchange is mediated by septal junctions that traverse the septal peptidoglycan through nanopores. FurC (PerR) is an essential transcriptional regulator in Anabaena, which modulates the response to several stresses. Here, we show that furC-overexpressing cells result in a modified exoproteome and the release of peptidoglycan fragments. Phenotypically, important alterations in nanopore formation and cell-to-cell communication were observed. Our results expand the roles of FurC to the modulation of cell-wall biogenesis and recycling, as well as in intercellular molecular transfer.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Llamas A, Leon-Miranda E, Tejada-Jimenez M. Microalgal and Nitrogen-Fixing Bacterial Consortia: From Interaction to Biotechnological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2476. [PMID: 37447037 PMCID: PMC10346606 DOI: 10.3390/plants12132476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Microalgae are used in various biotechnological processes, such as biofuel production due to their high biomass yields, agriculture as biofertilizers, production of high-value-added products, decontamination of wastewater, or as biological models for carbon sequestration. The number of these biotechnological applications is increasing, and as such, any advances that contribute to reducing costs and increasing economic profitability can have a significant impact. Nitrogen fixing organisms, often called diazotroph, also have great biotechnological potential, mainly in agriculture as an alternative to chemical fertilizers. Microbial consortia typically perform more complex tasks than monocultures and can execute functions that are challenging or even impossible for individual strains or species. Interestingly, microalgae and diazotrophic organisms are capable to embrace different types of symbiotic associations. Certain corals and lichens exhibit this symbiotic relationship in nature, which enhances their fitness. However, this relationship can also be artificially created in laboratory conditions with the objective of enhancing some of the biotechnological processes that each organism carries out independently. As a result, the utilization of microalgae and diazotrophic organisms in consortia is garnering significant interest as a potential alternative for reducing production costs and increasing yields of microalgae biomass, as well as for producing derived products and serving biotechnological purposes. This review makes an effort to examine the associations of microalgae and diazotrophic organisms, with the aim of highlighting the potential of these associations in improving various biotechnological processes.
Collapse
Affiliation(s)
- Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain; (E.L.-M.); (M.T.-J.)
| | | | | |
Collapse
|
4
|
Aguilera A, Distéfano A, Jauzein C, Correa-Aragunde N, Martinez D, Martin MV, Sueldo DJ. Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7219-7242. [PMID: 36179088 DOI: 10.1093/jxb/erac363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
As in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism. Intracellular molecules released during cell demise may act as 'survival' or 'death' signals and control the propagation of cell death to surrounding cells, even in unicellular organisms. This review explores different signals involved in cell-cell communication and systemic signalling in photosynthetic organisms, in particular Ca2+, reactive oxygen species, lipid derivates, nitric oxide, and eATP. We discuss their possible mode-of-action as either 'survival' or 'death' molecules and their potential role in determining cell fate in neighbouring cells. By comparing the knowledge available across the taxonomic spectrum of this coherent phylogenetic group, from cyanobacteria to vascular plants, we aim at contributing to the identification of conserved mechanisms that control cell death propagation in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Cécile Jauzein
- Ifremer, Centre de Brest, DYNECO-Pelagos, F-29280 Plouzané, France
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Dana Martinez
- Instituto de Fisiología Vegetal (INFIVE-CONICET), Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Universidad Nacional de Mar del Plata,7600 Mar del Plata, Argentina
| | - Daniela J Sueldo
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
5
|
Kieninger AK, Tokarz P, Janović A, Pilhofer M, Weiss GL, Maldener I. SepN is a septal junction component required for gated cell-cell communication in the filamentous cyanobacterium Nostoc. Nat Commun 2022; 13:7486. [PMID: 36470860 PMCID: PMC9722847 DOI: 10.1038/s41467-022-34946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/11/2022] [Indexed: 12/09/2022] Open
Abstract
Multicellular organisms require controlled intercellular communication for their survival. Strains of the filamentous cyanobacterium Nostoc regulate cell-cell communication between sister cells via a conformational change in septal junctions. These multi-protein cell junctions consist of a septum spanning tube with a membrane-embedded plug at both ends, and a cap covering the plug on the cytoplasmic side. The identities of septal junction components are unknown, with exception of the protein FraD. Here, we identify and characterize a FraD-interacting protein, SepN, as the second component of septal junctions in Nostoc. We use cryo-electron tomography of cryo-focused ion beam-thinned cyanobacterial filaments to show that septal junctions in a sepN mutant lack a plug module and display an aberrant cap. The sepN mutant exhibits highly reduced cell-cell communication rates, as shown by fluorescence recovery after photobleaching experiments. Furthermore, the mutant is unable to gate molecule exchange through septal junctions and displays reduced filament survival after stress. Our data demonstrate the importance of controlling molecular diffusion between cells to ensure the survival of a multicellular organism.
Collapse
Affiliation(s)
- Ann-Katrin Kieninger
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Piotr Tokarz
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Ana Janović
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Martin Pilhofer
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Gregor L. Weiss
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Iris Maldener
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Nyongesa S, Weber PM, Bernet È, Pulido F, Nieves C, Nieckarz M, Delaby M, Viehboeck T, Krause N, Rivera-Millot A, Nakamura A, Vischer NOE, vanNieuwenhze M, Brun YV, Cava F, Bulgheresi S, Veyrier FJ. Evolution of longitudinal division in multicellular bacteria of the Neisseriaceae family. Nat Commun 2022; 13:4853. [PMID: 35995772 PMCID: PMC9395523 DOI: 10.1038/s41467-022-32260-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Rod-shaped bacteria typically elongate and divide by transverse fission. However, several bacterial species can form rod-shaped cells that divide longitudinally. Here, we study the evolution of cell shape and division mode within the family Neisseriaceae, which includes Gram-negative coccoid and rod-shaped species. In particular, bacteria of the genera Alysiella, Simonsiella and Conchiformibius, which can be found in the oral cavity of mammals, are multicellular and divide longitudinally. We use comparative genomics and ultrastructural microscopy to infer that longitudinal division within Neisseriaceae evolved from a rod-shaped ancestor. In multicellular longitudinally-dividing species, neighbouring cells within multicellular filaments are attached by their lateral peptidoglycan. In these bacteria, peptidoglycan insertion does not appear concentric, i.e. from the cell periphery to its centre, but as a medial sheet guillotining each cell. Finally, we identify genes and alleles associated with multicellularity and longitudinal division, including the acquisition of amidase-encoding gene amiC2, and amino acid changes in proteins including MreB and FtsA. Introduction of amiC2 and allelic substitution of mreB in a rod-shaped species that divides by transverse fission results in shorter cells with longer septa. Our work sheds light on the evolution of multicellularity and longitudinal division in bacteria, and suggests that members of the Neisseriaceae family may be good models to study these processes due to their morphological plasticity and genetic tractability.
Collapse
Affiliation(s)
- Sammy Nyongesa
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Philipp M Weber
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
| | - Ève Bernet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Francisco Pulido
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Cecilia Nieves
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Marie Delaby
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, , University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Nicole Krause
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
| | - Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Arnaldo Nakamura
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Norbert O E Vischer
- Bacterial Cell Biology & Physiology, Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098, Amsterdam, the Netherlands
| | | | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Frédéric J Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
7
|
Masumoto H, Sanders WB. The Lichen Photobiont Genus Rhizonema (cyanobacteria) Exhibits Diverse Modes of Branching, Both False and True. JOURNAL OF PHYCOLOGY 2022; 58:612-625. [PMID: 35567534 DOI: 10.1111/jpy.13256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
The recently described genus Rhizonema is among the most important cyanobacterial partners in lichen symbioses, but its morphological characterization in the genus diagnosis-true branching of the T-type-appears at odds with several published figures showing false branching. We investigated cyanobiont branching and cell division with light microscopy in two basidiolichens from Florida and one from Japan, including aposymbiotically cultured material of the latter. Mycobiont species identities (Cyphellostereum jamesianum, Dictyonema darwinianum, and D. moorei) and photobiont genus identity (Rhizonema) were corroborated with ITS and rbcLX sequences, respectively. Single and paired false branching occurred commonly in all three strains examined. False branches developed adjacent to necridic cells or heterocytes, or by separation of vegetative cells at compression folds in the trichome. Non-transverse cell divisions, usually oblique, were observed in two of the three Rhizonema strains examined. T-type true branches sometimes arose from such divisions, although oblique growth from the branch cell often resulted in ambiguous branch junctions. Additionally, Y-type true branches appeared to grow from contorted filaments. In cultured material, a kind of pseudo-branch sometimes arose from single- or several-celled segments liberated from trichome apices. The segments attached secondarily to filaments and grew there as apparent branches. We conclude that Rhizonema is a genus of considerable morphological flexibility, with multiple modes of branching possible in a single strain. While true branching or non-transverse divisions, when observable, may help distinguish Rhizonema from the phenotypically similar Scytonema, false branching occurs commonly in both genera, and therefore cannot be used to distinguish them.
Collapse
Affiliation(s)
- Hiroshi Masumoto
- Laboratory of Terrestrial Microbiology and Systematics, Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Kyoto, 606-8501, Japan
| | - William B Sanders
- Department of Biological Sciences, Florida Gulf Coast University, 10501 FGCU Blvd. South, Ft. Myers, Florida, USA
| |
Collapse
|
8
|
Abstract
Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; ,
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; , .,Institut WUT-AMU, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Ramos-León F, Ramamurthi K. Cytoskeletal proteins: Lessons learned from bacteria. Phys Biol 2022; 19. [PMID: 35081523 DOI: 10.1088/1478-3975/ac4ef0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Cytoskeletal proteins are classified as a group that is defined functionally, whose members are capable of polymerizing into higher order structures, either dynamically or statically, to perform structural roles during a variety of cellular processes. In eukaryotes, the most well-studied cytoskeletal proteins are actin, tubulin, and intermediate filaments, and are essential for cell shape and movement, chromosome segregation, and intracellular cargo transport. Prokaryotes often harbor homologs of these proteins, but in bacterial cells, these homologs are usually not employed in roles that can be strictly defined as "cytoskeletal". However, several bacteria encode other proteins capable of polymerizing which, although they do not appear to have a eukaryotic counterpart, nonetheless appear to perform a more traditional "cytoskeletal" function. In this review, we discuss recent reports that cover the structure and functions of prokaryotic proteins that are broadly termed as cytoskeletal, either by sequence homology or by function, to highlight how the enzymatic properties of traditionally studied cytoskeletal proteins may be used for other types of cellular functions; and to demonstrate how truly "cytoskeletal" functions may be performed by uniquely bacterial proteins that do not display homology to eukaryotic proteins.
Collapse
Affiliation(s)
- Félix Ramos-León
- National Institutes of Health, 37 Convent Dr., Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| | - Kumaran Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Dr, Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| |
Collapse
|
10
|
Garg R, Maldener I. The Formation of Spore-Like Akinetes: A Survival Strategy of Filamentous Cyanobacteria. Microb Physiol 2021; 31:296-305. [PMID: 34482304 DOI: 10.1159/000517443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Some cyanobacteria of the order Nostocales can form akinetes, spore-like dormant cells resistant to various unfavorable environmental fluctuations. Akinetes are larger than vegetative cells and contain large quantities of reserve products, mainly glycogen and the nitrogen storage polypeptide polymer cyanophycin. Akinetes are enveloped in a thick protective coat containing a multilayered structure and are able to germinate into new vegetative cells under suitable growth conditions. Here, we summarize the significant morphological and physiological changes that occur during akinete differentiation and germination and present our investigation of the physiological function of the storage polymer cyanophycin in these cellular processes. We show that the cyanophycin production is not required for formation and germination of the akinetes in the filamentous cyanobacterium Anabaena variabilis ATCC 29413.
Collapse
Affiliation(s)
- Ritu Garg
- Institute of Microbiology and Infection Medicine, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Institute of Microbiology and Infection Medicine, Organismic Interactions, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Jung P, D’Agostino PM, Brust K, Büdel B, Lakatos M. Final Destination? Pinpointing Hyella disjuncta sp. nov. PCC 6712 (Cyanobacteria) Based on Taxonomic Aspects, Multicellularity, Nitrogen Fixation and Biosynthetic Gene Clusters. Life (Basel) 2021; 11:916. [PMID: 34575065 PMCID: PMC8472315 DOI: 10.3390/life11090916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Unicellular cyanobacteria inhabit a wide range of ecosytems and can be found throughout the phylum offering space for taxonomic confusion. One example is strain PCC 6712 that was described as Chlorogloea sp. (Nostocales) and later assigned to the genus Chroococcidiopsis (Chroococcidiopsidales). We now show that this strain belongs to the order Pleurocapsales and term it Hyella disjuncta based on morphology, genome analyses and 16S-23S ITS rRNA phylogeny. Genomic analysis indicated that H. disjuncta PCC 6712 shared about 44.7% orthologue genes with its closest relative H. patelloides. Furthermore, 12 cryptic biosynthetic gene clusters (BGCs) with potential bioactivity, such as a mycosporine-like amino acid BGC, were detected. Interestingly, the full set of nitrogen fixation genes was found in H. disjuncta PCC 6712 despite its inability to grow on nitrogen-free medium. A comparison of genes responsible for multicellularity was performed, indicating that most of these genes were present and related to those found in other cyanobacterial orders. This is in contrast to the formation of pseudofilaments-a main feature of the genus Hyella-which is weakly expressed in H. disjuncta PCC 6712 but prominent in Hyella patelloides LEGE 07179. Thus, our study pinpoints crucial but hidden aspects of polyphasic cyanobacterial taxonomy.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10–16, 66953 Pirmasens, Germany;
| | - Paul M. D’Agostino
- Department of Technical Biochemistry, Technical University of Dresden, Bergstr. 66, 01069 Dresden, Germany;
| | - Katharina Brust
- Department of Ecology, University of Kaiserslautern, Erwin Schrödinger Str. 14, 67663 Kaiserslautern, Germany;
| | - Burkhard Büdel
- Department of Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany;
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10–16, 66953 Pirmasens, Germany;
| |
Collapse
|
12
|
Single-Cell Measurements of Fixation and Intercellular Exchange of C and N in the Filaments of the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. mBio 2021; 12:e0131421. [PMID: 34399619 PMCID: PMC8406292 DOI: 10.1128/mbio.01314-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Under diazotrophic conditions, the model filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 develops a metabolic strategy based on the physical separation of the processes of oxygenic photosynthesis, in vegetative cells, and N2 fixation, in heterocysts. This strategy requires the exchange of carbon and nitrogen metabolites and their distribution along the filaments, which takes place through molecular diffusion via septal junctions involving FraCD proteins. Here, Anabaena was incubated in a time course (up to 20 h) with [13C]bicarbonate and 15N2 and analyzed by secondary ion mass spectrometry imaging (SIMS) (large-geometry SIMS [LG-SIMS] and NanoSIMS) to quantify C and N assimilation and distribution in the filaments. The 13C/12C and 15N/14N ratios measured in wild-type filaments showed a general increase with time. The enrichment was relatively homogeneous in vegetative cells along individual filaments, while it was reduced in heterocysts. Heterocysts, however, accumulated recently fixed N at their poles, in which the cyanophycin plug [multi-l-arginyl-poly(l-aspartic acid)] is located. In contrast to the rather homogeneous label found along stretches of vegetative cells, 13C/12C and 15N/14N ratios were significantly different between filaments both at the same and different time points, showing high variability in metabolic states. A fraC fraD mutant did not fix N2, and the 13C/12C ratio was homogeneous along the filament, including the heterocyst in contrast to the wild type. Our results show the consumption of reduced C in the heterocysts associated with the fixation and export of fixed N and present an unpredicted heterogeneity of cellular metabolic activity in different filaments of an Anabaena culture under controlled conditions.
Collapse
|
13
|
Heterocyst Septa Contain Large Nanopores That Are Influenced by the Fra Proteins in the Filamentous Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2021; 203:e0008121. [PMID: 33846119 DOI: 10.1128/jb.00081-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multicellular heterocyst-forming cyanobacteria, such as Anabaena, grow as chains of cells forming filaments that, under diazotrophic conditions, contain two cell types: vegetative cells that perform oxygenic photosynthesis and N2-fixing heterocysts. Along the filament, the intercellular septa contain a thick peptidoglycan layer that forms septal disks. Proteinaceous septal junctions connect the cells in the filament traversing the septal disks through nanopores. The fraCDE operon encodes proteins needed to make long filaments in Anabaena. FraC and FraD, located at the intercellular septa, are involved in the formation of septal junctions. Using a superfolder-green fluorescent protein (GFP) fusion, we found in this study that FraE is mainly localized to the poles of the heterocysts, consistent with the requirement of FraE for constriction of the heterocyst poles to form the "heterocyst neck." A fraE insertional mutant was impaired by 22% to 38% in transfer of fluorescent calcein from vegetative cells to heterocysts. Septal disks were inspected in murein sacculi from heterocyst-enriched preparations. Unexpectedly, the diameter of the nanopores in heterocyst septa was about 1.5- to 2-fold larger than in vegetative cell septa. The number of these nanopores was 76% and 6% of the wild-type number in fraE and fraC fraD mutants, respectively. Our results show that FraE is mainly involved in heterocyst maturation, whereas FraC and FraD are needed for the formation of the large nanopores of heterocyst septa, as they are for vegetative cell nanopores. Additionally, arrays of small pores conceivably involved in polysaccharide export were observed close to the septal disks in the heterocyst murein sacculus preparations. IMPORTANCE Intercellular communication, an essential attribute of multicellularity, is required for diazotrophic growth in heterocyst-forming cyanobacteria such as Anabaena, in which the cells are connected by proteinaceous septal junctions that are structural analogs of metazoan connexons. The septal junctions allow molecular intercellular diffusion traversing the septal peptidoglycan through nanopores. In Anabaena the fraCDE operon encodes septal proteins involved in intercellular communication. FraC and FraD are components of the septal junctions along the filament, whereas here we show that FraE is mainly present at the heterocyst poles. We found that the intercellular septa in murein sacculi from heterocysts contain nanopores that are larger than those in vegetative cells, establishing a previously unknown difference between heterocyst and vegetative cell septa in Anabaena.
Collapse
|
14
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
15
|
Kieninger AK, Maldener I. Cell-cell communication through septal junctions in filamentous cyanobacteria. Curr Opin Microbiol 2021; 61:35-41. [PMID: 33676334 DOI: 10.1016/j.mib.2021.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Septal junctions are cell-cell connections that mediate intercellular communication in filamentous cyanobacteria. The septal peptidoglycan is perforated by dozens of 20 nm-wide nanopores, through which these proteinaceous structures traverse, physically connecting adjacent cells. On each cytoplasmic side, every septal junction contains a flexible cap structure that closes the connection in a reversible manner upon stress. This gating mechanism reminds of the gap junctions from metazoans and represents a primordial control system for cell-cell communication. In this review, we summarize the knowledge about formation of the nanopore array as the framework for incorporation of cell-cell connecting septal junctions. Furthermore, the architecture of septal junctions, proteins involved in septal junction constitution and regulation of intercellular communication will be addressed.
Collapse
Affiliation(s)
- Ann-Katrin Kieninger
- Institute of Microbiology and Infection Medicine, Organismic Interactions, Eberhard Karls University, Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iris Maldener
- Institute of Microbiology and Infection Medicine, Organismic Interactions, Eberhard Karls University, Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
16
|
Fritts RK, McCully AL, McKinlay JB. Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiol Mol Biol Rev 2021; 85:e00135-20. [PMID: 33441489 PMCID: PMC7849352 DOI: 10.1128/mmbr.00135-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.
Collapse
Affiliation(s)
- Ryan K Fritts
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
17
|
Camargo S, Leshkowitz D, Dassa B, Mariscal V, Flores E, Stavans J, Arbel-Goren R. Impaired cell-cell communication in the multicellular cyanobacterium Anabaena affects carbon uptake, photosynthesis, and the cell wall. iScience 2021; 24:101977. [PMID: 33458622 PMCID: PMC7797909 DOI: 10.1016/j.isci.2020.101977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/08/2020] [Accepted: 12/17/2020] [Indexed: 12/23/2022] Open
Abstract
Cell-cell communication is an essential attribute of multicellular organisms. The effects of perturbed communication were studied in septal protein mutants of the heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 model organism. Strains bearing sepJ and sepJ/fraC/fraD deletions showed differences in growth, pigment absorption spectra, and spatial patterns of expression of the hetR gene encoding a heterocyst differentiation master regulator. Global changes in gene expression resulting from deletion of those genes were mapped by RNA sequencing analysis of wild-type and mutant strains, both under nitrogen-replete and nitrogen-poor conditions. The effects of sepJ and fraC/fraD deletions were non-additive, and perturbed cell-cell communication led to significant changes in global gene expression. Most significant effects, related to carbon metabolism, included increased expression of genes encoding carbon uptake systems and components of the photosynthetic apparatus, as well as decreased expression of genes encoding cell wall components related to heterocyst differentiation and to polysaccharide export.
Collapse
Affiliation(s)
- Sergio Camargo
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dena Leshkowitz
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Bareket Dassa
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Abstract
Multicellularity is found in bacteria as well as in eukaryotes, and the filamentous heterocyst-forming (N2-fixing) cyanobacteria represent a simple and ancient paradigm of multicellular organisms. Multicellularity generally involves cell-cell adhesion and communication. In filamentous heterocyst-forming (N2-fixing) cyanobacteria, septal junctions join adjacent cells, mediating intercellular communication, and are thought to traverse the septal peptidoglycan through nanopores. Fluorescence recovery after photobleaching (FRAP) analysis with the fluorescent marker calcein showed that cultures of Anabaena sp. strain PCC 7120 grown in the presence of combined nitrogen contained a substantial fraction of noncommunicating cells (58% and 80% of the tested vegetative cells in nitrate- and ammonium-grown cultures, respectively), whereas cultures induced for nitrogen fixation contained far fewer noncommunicating cells (16%). A single filament could have communicating and noncommunicating cells. These observations indicate that all (or most of) the septal junctions in a cell can be coordinately regulated and are coherent with the need for intercellular communication, especially under diazotrophic conditions. Consistently, intercellular exchange was observed to increase in response to N deprivation and to decrease rapidly in response to the presence of ammonium in the medium or to nitrate assimilation. Proteins involved in the formation of septal junctions have been identified in Anabaena and include SepJ, FraC, and FraD. Here, we reevaluated rates of intercellular transfer of calcein and the number of nanopores in mutants lacking these proteins and found a strong positive correlation between the two parameters only in cultures induced for nitrogen fixation. Thus, whereas the presence of a substantial number of noncommunicating cells appears to impair the correlation, data obtained in diazotrophic cultures support the idea that the nanopores are the structures that hold the septal junctions. IMPORTANCE Multicellularity is found in bacteria as well as in eukaryotes, and the filamentous heterocyst-forming (N2-fixing) cyanobacteria represent a simple and ancient paradigm of multicellular organisms. Multicellularity generally involves cell-cell adhesion and communication. The cells in the cyanobacterial filaments are joined by proteinaceous septal junctions that mediate molecular diffusion. The septal junctions traverse the septal peptidoglycan, which bears holes termed nanopores. Our results show that the septal junctions can be coordinately regulated in a cell and emphasize the relationship between septal junctions and nanopores to build intercellular communication structures, which are essential for the multicellular behavior of heterocyst-forming cyanobacteria.
Collapse
|
19
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
20
|
Ballal A, Chakravarty D, Bihani SC, Banerjee M. Gazing into the remarkable world of non-heme catalases through the window of the cyanobacterial Mn-catalase 'KatB'. Free Radic Biol Med 2020; 160:480-487. [PMID: 32858159 DOI: 10.1016/j.freeradbiomed.2020.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Catalases, enzymes that decompose H2O2, are broadly categorized as heme catalases or non-heme catalases. The non-heme catalases are also known as Mn-catalases as they have Mn atoms in their active sites. However, unlike the well characterized heme-catalases, the study of Mn-catalases has gained importance only in the last few years. The filamentous, heterocystous, N2-fixing cyanobacterium Anabaena PCC 7120, shows the presence of two Mn-catalases, KatA and KatB, but lacks heme catalases. Of the two Mn-catalases, KatB, which is induced by salt/desiccation, plays a major role in overcoming salinity/oxidative stress. In this mini review, we have summarized the recent advances made in the field of Mn-catalases, particularly KatB, and have interpreted these results in the larger context of stress physiology. These aspects bring to the fore the distinctive biochemical/structural properties of Mn-catalases and furthermore highlight the in vivo importance of these enzymes in adapting to oxidative stresses.
Collapse
Affiliation(s)
- Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
21
|
Ptushenko VV. Electric Cables of Living Cells. I. Energy Transfer along Coupling Membranes. BIOCHEMISTRY (MOSCOW) 2020; 85:820-832. [DOI: 10.1134/s000629792007010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Urrejola C, von Dassow P, van den Engh G, Salas L, Mullineaux CW, Vicuña R, Sánchez-Baracaldo P. Loss of Filamentous Multicellularity in Cyanobacteria: the Extremophile Gloeocapsopsis sp. Strain UTEX B3054 Retained Multicellular Features at the Genomic and Behavioral Levels. J Bacteriol 2020; 202:e00514-19. [PMID: 32253342 PMCID: PMC7253616 DOI: 10.1128/jb.00514-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
Multicellularity in Cyanobacteria played a key role in their habitat expansion, contributing to the Great Oxidation Event around 2.45 billion to 2.32 billion years ago. Evolutionary studies have indicated that some unicellular cyanobacteria emerged from multicellular ancestors, yet little is known about how the emergence of new unicellular morphotypes from multicellular ancestors occurred. Our results give new insights into the evolutionary reversion from which the Gloeocapsopsis lineage emerged. Flow cytometry and microscopy results revealed morphological plasticity involving the patterned formation of multicellular morphotypes sensitive to environmental stimuli. Genomic analyses unveiled the presence of multicellularity-associated genes in its genome. Calcein-fluorescence recovery after photobleaching (FRAP) experiments confirmed that Gloeocapsopsis sp. strain UTEX B3054 carries out cell-to-cell communication in multicellular morphotypes but at slower time scales than filamentous cyanobacteria. Although traditionally classified as unicellular, our results suggest that Gloeocapsopsis displays facultative multicellularity, a condition that may have conferred ecological advantages for thriving as an extremophile for more than 1.6 billion years.IMPORTANCECyanobacteria are among the few prokaryotes that evolved multicellularity. The early emergence of multicellularity in Cyanobacteria (2.5 billion years ago) entails that some unicellular cyanobacteria reverted from multicellular ancestors. We tested this evolutionary hypothesis by studying the unicellular strain Gloeocapsopsis sp. UTEX B3054 using flow cytometry, genomics, and cell-to-cell communication experiments. We demonstrate the existence of a well-defined patterned organization of cells in clusters during growth, which might change triggered by environmental stimuli. Moreover, we found genomic signatures of multicellularity in the Gloeocapsopsis genome, giving new insights into the evolutionary history of a cyanobacterial lineage that has thrived in extreme environments since the early Earth. The potential benefits in terms of resource acquisition and the ecological relevance of this transient behavior are discussed.
Collapse
Affiliation(s)
- Catalina Urrejola
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Peter von Dassow
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto Milenio de Oceanografía, Concepción, Chile
- UMI3614 Evolutionary Biology and Ecology of Algae, CNRS-UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France
| | | | - Loreto Salas
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rafael Vicuña
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
23
|
Springstein BL, Arévalo S, Helbig AO, Herrero A, Stucken K, Flores E, Dagan T. A novel septal protein of multicellular heterocystous cyanobacteria is associated with the divisome. Mol Microbiol 2020; 113:1140-1154. [DOI: 10.1111/mmi.14483] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC and Universidad de Sevilla Seville Spain
| | - Andreas O. Helbig
- AG Proteomics & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC and Universidad de Sevilla Seville Spain
| | - Karina Stucken
- Department of Food Engineering Universidad de La Serena La Serena Chile
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC and Universidad de Sevilla Seville Spain
| | - Tal Dagan
- Institute of General Microbiology Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| |
Collapse
|
24
|
Alcorta J, Vergara-Barros P, Antonaru LA, Alcamán-Arias ME, Nürnberg DJ, Díez B. Fischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria. Extremophiles 2019; 23:635-647. [PMID: 31512055 DOI: 10.1007/s00792-019-01125-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
Abstract
The true-branching cyanobacterium Fischerella thermalis (also known as Mastigocladus laminosus) is widely distributed in hot springs around the world. Morphologically, it has been described as early as 1837. However, its taxonomic placement remains controversial. F. thermalis belongs to the same genus as mesophilic Fischerella species but forms a monophyletic clade of thermophilic Fischerella strains and sequences from hot springs. Their recent divergence from freshwater or soil true-branching species and the ongoing process of specialization inside the thermal gradient make them an interesting evolutionary model to study. F. thermalis is one of the most complex prokaryotes. It forms a cellular network in which the main trichome and branches exchange metabolites and regulators via septal junctions. This species can adapt to a variety of environmental conditions, with its photosynthetic apparatus remaining active in a temperature range from 15 to 58 °C. Together with its nitrogen-fixing ability, this allows it to dominate in hot spring microbial mats and contribute significantly to the de novo carbon and nitrogen input. Here, we review the current knowledge on the taxonomy and distribution of F. thermalis, its morphological complexity, and its physiological adaptations to an extreme environment.
Collapse
Affiliation(s)
- Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile
| | - Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile
| | - Laura A Antonaru
- Department of Life Science, Imperial College, London, SW7 2AZ, UK
| | - María E Alcamán-Arias
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile.,Department of Oceanography, University of Concepcion, Concepción, Chile.,Center for Climate and Resilience Research (CR)2, Santiago, Chile
| | - Dennis J Nürnberg
- Department of Life Science, Imperial College, London, SW7 2AZ, UK.,Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Avenida Libertador Bernardo O'higgins 340, Casilla 144-D, C.P. 651, 3677, Santiago, Chile. .,Center for Climate and Resilience Research (CR)2, Santiago, Chile.
| |
Collapse
|
25
|
Weiss GL, Kieninger AK, Maldener I, Forchhammer K, Pilhofer M. Structure and Function of a Bacterial Gap Junction Analog. Cell 2019; 178:374-384.e15. [PMID: 31299201 PMCID: PMC6630896 DOI: 10.1016/j.cell.2019.05.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/04/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022]
Abstract
Multicellular lifestyle requires cell-cell connections. In multicellular cyanobacteria, septal junctions enable molecular exchange between sister cells and are required for cellular differentiation. The structure of septal junctions is poorly understood, and it is unknown whether they are capable of controlling intercellular communication. Here, we resolved the in situ architecture of septal junctions by electron cryotomography of cryo-focused ion beam-milled cyanobacterial filaments. Septal junctions consisted of a tube traversing the septal peptidoglycan. Each tube end comprised a FraD-containing plug, which was covered by a cytoplasmic cap. Fluorescence recovery after photobleaching showed that intercellular communication was blocked upon stress. Gating was accompanied by a reversible conformational change of the septal junction cap. We provide the mechanistic framework for a cell junction that predates eukaryotic gap junctions by a billion years. The conservation of a gated dynamic mechanism across different domains of life emphasizes the importance of controlling molecular exchange in multicellular organisms.
Collapse
Affiliation(s)
- Gregor L Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Ann-Katrin Kieninger
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
26
|
Herrero A, Flores E. Developmental Biology in Cyanobacteria. Life (Basel) 2019; 9:life9020039. [PMID: 31083350 PMCID: PMC6617022 DOI: 10.3390/life9020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 01/04/2023] Open
Affiliation(s)
- Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41004 Seville, Spain.
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41004 Seville, Spain.
| |
Collapse
|
27
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|