1
|
Sánchez-López L, Chico B, García-Alonso MC, Lozano RM. Macrophage proteomic analysis of covalent immobilization of hyaluronic acid and graphene oxide on CoCr alloy in a tribocorrosive environment. J Biomed Mater Res A 2024; 112:1941-1959. [PMID: 38775427 DOI: 10.1002/jbm.a.37751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 09/03/2024]
Abstract
In this work, a sequential covalent immobilization of graphene oxide (GO) and hyaluronic acid (HA) is performed to obtain a biocompatible wear-resistant nanocoating on the surface of the biomedical grade cobalt-chrome (CoCr) alloy. Nanocoated CoCr surfaces were characterized by Raman spectroscopy and electrochemical impedance spectroscopy (EIS) in 3 g/L HA electrolyte. Tribocorrosion tests of the nanocoated CoCr surfaces were carried out in a pin on flat tribometer. The biological response of covalently HA/GO biofunctionalized CoCr surfaces with and without wear-corrosion processes was studied through the analysis of the proteome of macrophages. Raman spectra revealed characteristic bands of GO and HA on the functionalized CoCr surfaces. The electrochemical response by EIS showed a stable and protective behavior over 23 days in the simulated biological environment. HA/GO covalently immobilized on CoCr alloy is able to protect the surface and reduce the wear volume released under tribocorrosion tests. Unsupervised classification analysis of the macrophage proteome via hierarchical clustering and principal component analysis (PCA) revealed that the covalent functionalization on CoCr enhances the macrophage biocompatibility in vitro. On the other hand, disruption of the HA/GO nanocoating by tribocorrosion processes induced a macrophage proteome which was differently clustered and was distantly located in the PCA space. In addition, tribocorrosion induced an increase in the percentage of upregulated and downregulated proteins in the macrophage proteome, revealing that disruption of the covalent nanocoating impacts the macrophage proteome. Although macrophage inflammation induced by tribocorrosion of HA/GO/CoCr surfaces is observed, it is ameliorated by the covalently grafting of HA, which provides immunomodulation by eliciting downregulations in characteristic pro-inflammatory signaling involved in inflammation and aseptic loosening of CoCr joint arthroplasties. Covalent HA/GO nanocoating on CoCr provides potential applications for in vivo joint prostheses led a reduced metal-induced inflammation and degradation by wear-corrosion.
Collapse
Affiliation(s)
- L Sánchez-López
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- PhD Program in Advanced Materials and Nanotechnology, Doctoral School, Universidad Autónoma de Madrid, Madrid, Spain
| | - B Chico
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Maria Cristina García-Alonso
- Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Rosa M Lozano
- Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
2
|
Basgul C, MacDonald DW, Klein GR, Piuzzi NS, Kurtz SM. Retrieval Analysis of Titanium Nitride Coatings for Orthopaedic Implants. J Arthroplasty 2024; 39:S272-S279. [PMID: 39019413 DOI: 10.1016/j.arth.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND The first generation of titanium nitride (TiN) coatings for orthopaedic implants was clinically introduced in the 1990s because of their promising biocompatibility, wear resistance, and corrosion resistance. This study evaluated the in vivo performance of early TiN-coated knee and hip implants, focusing on the bearing surfaces and mechanisms of in vivo damage. METHODS There were 13 TiN-coated implants (5 knee and 8 hip) retrieved from 8 patients as part of a multi-institutional implant retrieval program. The average implantation time was 4.25 years for knees and 17.5 years for hips. Implant revisions occurred for various reasons, including polyethylene wear, loosening, pain, infection, and instability. Components were examined using a semiquantitative scoring method, and surface roughness measurements were performed using white-light interferometry. Surface morphology, chemistry, and particle characterization were also assessed by scanning electron microscopy. RESULTS For hips, mild corrosion was found on femoral head tapers, along with severe scratching on certain femoral heads. Knee implants exhibited low burnishing and scratching for both mechanisms. Roughness measurements (Sa) were 37.3 nm (interquartile range = 22.0 to 62.4) for hips and 85.3 nm (interquartile range = 66.3 to 110) for knees. The observed scratch depth in both hip and knee implants due to third-body particles ranged from 0.3 to 1.3 μm. The coating coverage remained intact in the majority of the implants, with 2 cases of small, localized cohesive chipping and substrate exposure. CONCLUSIONS The results of this study confirm the potential in vivo durability of early TiN coatings and will be useful in benchmarking wear tests for modern TiN-coated orthopaedic implants.
Collapse
Affiliation(s)
- Cemile Basgul
- Implant Research Core, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Daniel W MacDonald
- Implant Research Core, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Gregg R Klein
- Department of Orthopaedic Surgery, Hackensack University Medical Center, Hackensack, New Jersey
| | - Nicolas S Piuzzi
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Steven M Kurtz
- Implant Research Core, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Kulkarni V, Kumar CS, Ghosh S, Rath MK. Estimation of Titanium Levels in Blood Following Reconstruction of Post-Craniotomy Defect by Titanium Mesh Using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). J Maxillofac Oral Surg 2024; 23:623-629. [PMID: 38911419 PMCID: PMC11189839 DOI: 10.1007/s12663-023-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/16/2023] [Indexed: 06/25/2024] Open
Abstract
Introduction Titanium and its alloys are the most popular choice of materials for the reconstruction of craniofacial defects. They have lighter weight and are nonferromagnetic, which makes them an advantage in cranial defect reconstruction. Although the formed oxide layer makes them corrosion-resistant, levels of titanium in blood have been seen in trace amounts. This is the first study as per authors' knowledge that a study of such kind has been conducted. Materials and methods A pilot study was carried out at a tertiary level hospital, considering the inclusion and exclusion criteria in patients who were planned for the reconstruction of the residual defect using titanium mesh. Preoperative and 03- and 06-months postoperative blood samples were collected and analyzed for estimating the levels of titanium ions in blood by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results Friedman's two-way analysis of variance by ranks was considered for testing of hypothesis summary, owing to the smaller sample size. The analysis suggested an increase in levels was minimal. Considering the asymptotic significances (two-tailed significance), a significance level was 0.050, which directed us to reject the null hypothesis. Pairwise comparison suggested the presence of negative values indicating steady increase in levels. Cluster analysis indicated that although minimal there is a cluster of difference in the values at all three stages. Continuous field information was used to determine the level with regard to the level of titanium at the three stages of study. Conclusion The study revealed that the levels of titanium ions increase on prolonged contact with living tissues. The trace elements have to be analyzed at regular intervals. This first-of-the-time study if extended to larger sample size would reveal interesting facts.
Collapse
Affiliation(s)
- Vishal Kulkarni
- Department of Oral and Maxillofacial Surgery, Command Military Dental Centre, Near Chappan Chouraha, Lucknow, India
| | - C. Senthil Kumar
- Department of Oral and Maxillofacial Surgery, Command Military Dental Centre, Near Chappan Chouraha, Lucknow, India
| | - Sirsendu Ghosh
- Department of Oral and Maxillofacial Surgery, Command Military Dental Centre, Near Chappan Chouraha, Lucknow, India
| | - Mukti Kanta Rath
- Department of Oral and Maxillofacial Surgery, Command Military Dental Centre, Near Chappan Chouraha, Lucknow, India
| |
Collapse
|
4
|
Fischer A, Telouk P, Beckmann C, Heermant S, Wittrock A, Debus J, Wimmer MA. Performance of Austenitic High-Nitrogen Steels under Gross Slip Fretting Corrosion in Bovine Serum. J Funct Biomater 2024; 15:110. [PMID: 38667567 PMCID: PMC11051106 DOI: 10.3390/jfb15040110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Modular artificial hip joints are a clinical standard today. However, the release of wear products from the head-taper interface, which includes wear particles in the nm size range, as well as metal ions, have raised concerns. Depending on the loading of such taper joints, a wide variety of different mechanisms have been found by retrieval analyses. From these, this paper concentrates on analyzing the contribution of gross slip fretting corrosion at ultra-mild wear rates using a bovine calf serum solution (BCS) as the lubricant. The parameters were chosen based on biomechanical considerations, producing wear rates of some ng/m wear path. In parallel, the evolution of tribomaterial (third bodies) was analyzed as to its constituents and generation rates. It has already been shown earlier that, by an advantageous combination of wear mechanisms and submechanisms, certain constituents of the tribomaterial remain inside the contact area and act like extreme-pressure lubricant additives. For the known wear and corrosion resistance of austenitic high-nitrogen steels (AHNSs), which outperform CoCrMo alloys even under inflammatory conditions, we hypothesized that such steels will generate ultra-mild wear rates under gross slip fretting. While testing AHNSs against commercially available biomedical-grade materials of CoCrMo and TiAlV alloys, as well as zirconia-toughened alumina (ZTA) and against itself, it was found that AHNSs in combination with a Ti6Al4V alloy generated the smallest wear rate under gross slip fretting corrosion. This paper then discusses the wear behavior on the basis of ex situ analyses of the worn surfaces as to the acting wear mechanisms and submechanisms, as well as to the tribological reaction products.
Collapse
Affiliation(s)
- Alfons Fischer
- Max Planck Institute for Sustainable Materials, Microstructure Physics and Alloy Design, 40237 Duesseldorf, Germany
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Philipe Telouk
- Laboratoire de Géologie, Université de Lyon, 69342 Lyon, France;
| | - Christian Beckmann
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany; (C.B.); (S.H.); (A.W.); (J.D.)
| | - Saskia Heermant
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany; (C.B.); (S.H.); (A.W.); (J.D.)
| | - Adrian Wittrock
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany; (C.B.); (S.H.); (A.W.); (J.D.)
| | - Jörg Debus
- Department of Physics, TU Dortmund University, 44227 Dortmund, Germany; (C.B.); (S.H.); (A.W.); (J.D.)
| | - Markus A. Wimmer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA;
| |
Collapse
|
5
|
Tölken LA, Wassilew GI, Grolimund D, Weitkamp T, Hesse B, Rakow A, Siemens N, Schoon J. Cobalt and Chromium Ions Impair Macrophage Response to Staphylococcus aureus Infection. ACS Biomater Sci Eng 2024; 10:563-574. [PMID: 38108141 DOI: 10.1021/acsbiomaterials.3c01031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Cobalt-chromium-molybdenum (CoCrMo) alloys are routinely used in arthroplasty. CoCrMo wear particles and ions derived from arthroplasty implants lead to macrophage-driven adverse local tissue reactions, which have been linked to an increased risk of periprosthetic joint infection after revision arthroplasty. While metal-induced cytotoxicity is well characterized in human macrophages, direct effects on their functionality have remained elusive. Synchrotron radiation X-ray microtomography and X-ray fluorescence mapping indicated that peri-implant tissues harvested during aseptic revision of different arthroplasty implants are exposed to Co and Cr in situ. Confocal laser scanning microscopy revealed that macrophage influx is predominant in patient tissue. While in vitro exposure to Cr3+ had only minor effects on monocytes/macrophage phenotype, pathologic concentrations of Co2+ significantly impaired both, monocyte/macrophage phenotype and functionality. High concentrations of Co2+ led to a shift in macrophage subsets and loss of surface markers, including CD14 and CD16. Both Co2+ and Cr3+ impaired macrophage responses to Staphylococcus aureus infection, and particularly, Co2+-exposed macrophages showed decreased phagocytic activity. These findings demonstrate the immunosuppressive effects of locally elevated metal ions on the innate immune response and support further investigations, including studies exploring whether Co2+ and Cr3+ or CoCrMo alloys per se expose the patients to a higher risk of infections post-revision arthroplasty.
Collapse
Affiliation(s)
- Lea A Tölken
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald 17489,Germany
| | - Georgi I Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Daniel Grolimund
- Swiss Light Source, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
| | | | - Bernhard Hesse
- Xploraytion GmbH, Berlin 10625, Germany
- ESRF-The European Synchrotron, Grenoble 38000, France
| | - Anastasia Rakow
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald 17489,Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald 17475, Germany
| |
Collapse
|
6
|
Sathishkumar S, Paulraj J, Chakraborti P, Muthuraj M. Comprehensive Review on Biomaterials and Their Inherent Behaviors for Hip Repair Applications. ACS APPLIED BIO MATERIALS 2023; 6:4439-4464. [PMID: 37871169 DOI: 10.1021/acsabm.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Developing biomaterials for hip prostheses is challenging and requires dedicated attention from researchers. Hip replacement is an inevitable and remarkable orthopedic therapy for enhancing the quality of patient life for those who have arthritis as well as trauma. Generally, five types of hip replacement procedures are successfully performed in the current medical market: total hip replacements, hip resurfacing, hemiarthroplasty, bipolar, and dual mobility systems. The average life span of artificial hip joints is about 15 years, and several studies have been conducted over the last 60 years to improve the performance and thereby increase the lifespan of artificial hip joints. Present-day prosthetic hip joints are linked to the wide availability of biomaterials. Metals, ceramics, and polymers are some of the most promising types of biomaterials; nevertheless, each biomaterial has advantages and disadvantages. Metals and ceramics fail in most applications owing to stress shielding and the emission of wear debris; ongoing research is being carried out to find a remedy to these unfavorable responses. Recent research found that polymers and composites based on polymers are significant alternative materials for artificial joints. With growing research and several biomaterials, recent reviews lag in effectively addressing hip implant materials' individual mechanical, tribological, and physiological behaviors. This Review comprehensively investigates the historical evolution of artificial hip replacement procedures and related biomaterials' mechanical, tribological, and biological characteristics. In addition, the most recent advances are also discussed to stimulate and guide future researchers as they seek more effective methods and synthesis of innovative biomaterials for hip arthroplasty application.
Collapse
|
7
|
Metallic Implants Used in Lumbar Interbody Fusion. MATERIALS 2022; 15:ma15103650. [PMID: 35629676 PMCID: PMC9146470 DOI: 10.3390/ma15103650] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, pedicle fixation systems have evolved and modifications in spinal fusion techniques have been developed to increase fusion rates and improve clinical outcomes after lumbar interbody fusion (LIF). Regarding materials used for screw and rod manufacturing, metals, especially titanium alloys, are the most popular resources. In the case of pedicle screws, that biomaterial can be also doped with hydroxyapatite, CaP, ECM, or tantalum. Other materials used for rod fabrication include cobalt-chromium alloys and nitinol (nickel-titanium alloy). In terms of mechanical properties, the ideal implant used in LIF should have high tensile and fatigue strength, Young's modulus similar to that of the bone, and should be 100% resistant to corrosion to avoid mechanical failures. On the other hand, a comprehensive understanding of cellular and molecular pathways is essential to identify preferable characteristics of implanted biomaterial to obtain fusion and avoid implant loosening. Implanted material elicits a biological response driven by immune cells at the site of insertion. These reactions are subdivided into innate (primary cellular response with no previous exposure) and adaptive (a specific type of reaction induced after earlier exposure to the antigen) and are responsible for wound healing, fusion, and also adverse reactions, i.e., hypersensitivity. The main purposes of this literature review are to summarize the physical and mechanical properties of metal alloys used for spinal instrumentation in LIF which include fatigue strength, Young's modulus, and corrosion resistance. Moreover, we also focused on describing biological response after their implantation into the human body. Our review paper is mainly focused on titanium, cobalt-chromium, nickel-titanium (nitinol), and stainless steel alloys.
Collapse
|
8
|
Sliding Corrosion Fatigue of Metallic Joint Implants: A Comparative Study of CoCrMo and Ti6Al4V in Simulated Synovial Environments. LUBRICANTS 2022. [DOI: 10.3390/lubricants10040065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mechanical contact in a corrosive synovial environment leads to progressive surface damage at the modular interface of the joint implants. The wear debris and corrosion products degrade the synovial fluids and change the lubrication mechanisms at the joints. Consequently, the unstable joint lubrication and corrosion products will further induce the undesirable performance of the joint implants. In this study, the two major joint materials, CoCrMo and Ti6Al4V, were tested during the course of reciprocal sliding contact in simulated synovial liquids. Open circuit potential and coefficient of friction were monitored to describe electrochemical and mechanical responses. Potentiostatic test results illustrated electrochemical damage on both surfaces that modified oxidation chemistry on both surfaces. However, more significant modification of the CoCrMo surface was detected during wear in the simulated joint liquid. Even with a reduced coefficient of friction on the CoCrMo surface in sodium lactate environments, fretting current density drastically increased in corrosive sodium lactate with pH 2. However, the test results from the Ti6Al4V surface presented less coefficient of friction values, and moderate change in fretting current. Therefore, the experimental study concluded that the biocompatibility of Ti6Al4V is superior to that of CoCrMo in the combined effect of mechanical loadings and an electrochemical environment.
Collapse
|
9
|
|
10
|
Räägel H, Turley A, Fish T, Franson J, Rollins T, Campbell S, Jorgensen MR. Medical Device Industry Approaches for Addressing Sources of Failing Cytotoxicity Scores. Biomed Instrum Technol 2021. [PMID: 34043008 DOI: 10.2345/0890-8205-55.2.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).
Collapse
|
11
|
Räägel H, Turley A, Fish T, Franson J, Rollins T, Campbell S, Jorgensen MR. Medical Device Industry Approaches for Addressing Sources of Failing Cytotoxicity Scores. Biomed Instrum Technol 2021; 55:69-84. [PMID: 34043008 PMCID: PMC8641414 DOI: 10.2345/0899-8205-55.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To ensure patient safety, medical device manufacturers are required by the Food and Drug Administration and other regulatory bodies to perform biocompatibility evaluations on their devices per standards, such as the AAMI-approved ISO 10993-1:2018 (ANSI/AAMI/ISO 10993-1:2018).However, some of these biological tests (e.g., systemic toxicity studies) have long lead times and are costly, which may hinder the release of new medical devices. In recent years, an alternative method using a risk-based approach for evaluating the toxicity (or biocompatibility) profile of chemicals and materials used in medical devices has become more mainstream. This approach is used as a complement to or substitute for traditional testing methods (e.g., systemic toxicity endpoints). Regardless of the approach, the one test still used routinely in initial screening is the cytotoxicity test, which is based on an in vitro cell culture system to evaluate potential biocompatibility effects of the final finished form of a medical device. However, it is known that this sensitive test is not always compatible with specific materials and can lead to failing cytotoxicity scores and an incorrect assumption of potential biological or toxicological adverse effects. This article discusses the common culprits of in vitro cytotoxicity failures, as well as describes the regulatory-approved methodology for cytotoxicity testing and the approach of using toxicological risk assessment to address clinical relevance of cytotoxicity failures for medical devices. Further, discrepancies among test results from in vitro tests, use of published half-maximal inhibitory concentration data, and the derivation of their relationship to tolerable exposure limits, reference doses, or no observed adverse effect levels are highlighted to demonstrate that although cytotoxicity tests in general are regarded as a useful sensitive screening assays, specific medical device materials are not compatible with these cellular/in vitro systems. For these cases, the results should be analyzed using more clinically relevant approaches (e.g., through chemical analysis or written risk assessment).
Collapse
Affiliation(s)
- Helin Räägel
- Helin Räägel, PhD, is a senior biocompatibility expert at Nelson Laboratories in Salt Lake City, UT.
| | - Audrey Turley
- Audrey Turley, BS, is a senior biocompatibility expert at Nelson Laboratories in Salt Lake City, UT.
| | - Trevor Fish
- Trevor Fish, MS, is a toxicologist at Nelson Laboratories in Salt Lake City, UT.
| | - Jeralyn Franson
- Jeralyn Franson, MS, is an associate technical consultant at Nelson Laboratories in Salt Lake City, UT.
| | - Thor Rollins
- Thor Rollins, BS, is a director of toxicology and E&L consulting at Nelson Laboratories in Salt Lake City, UT.
| | - Sarah Campbell
- Sarah Campbell, PhD, DABT, is a principal toxicologist at Nelson Laboratories in Salt Lake City, UT, and a title in the College of Pharmacy at the University of Utah, in Salt Lake City, UT.
| | - Matthew R. Jorgensen
- Matthew R Jorgensen, PhD, DABT, is a chemist, materials scientist, and toxicologist at Nelson Laboratories in Salt Lake City, UT.
| |
Collapse
|
12
|
Herranz G, Berges C, Naranjo JA, García C, Garrido I. Mechanical performance, corrosion and tribological evaluation of a Co-Cr-Mo alloy processed by MIM for biomedical applications. J Mech Behav Biomed Mater 2020; 105:103706. [PMID: 32279850 DOI: 10.1016/j.jmbbm.2020.103706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/23/2020] [Accepted: 02/16/2020] [Indexed: 11/15/2022]
Abstract
In this study, the processing parameters mechanical performance, corrosion and tribological evaluation of a low carbon content Co-Cr-Mo alloy are discussed. The production of parts using the Metal Injection Moulding (MIM) process is optimized, specifically concerning the rheological analysis of the prepared feedstocks, the optimum choice of the powder loading and the design of the debinding and sintering cycles. The mechanical properties as regards hardness, tensile strength and bending strength, as well as fatigue tests and wear characterization, are discussed for the full densified specimens obtained. Additionally, corrosion behaviour with the different methods and electrolytic solutions that simulate the biological environment has also been investigated. This approach allows us to confirm that the low-carbon cobalt alloy processed by MIM exhibits an adequate equilibrium between its mechanical and corrosion behaviour, with a notable performance during fatigue and wear tests. In the light of these findings, the use of this material for biomedical applications is discussed.
Collapse
Affiliation(s)
- Gemma Herranz
- UCLM PIM Research Laboratory, INEI-ETSII, Universidad de Castilla-La Mancha (UCLM), ETSI Industriales, E-13071, Ciudad Real, Spain.
| | - Cristina Berges
- UCLM PIM Research Laboratory, INEI-ETSII, Universidad de Castilla-La Mancha (UCLM), ETSI Industriales, E-13071, Ciudad Real, Spain
| | - Juan Alfonso Naranjo
- UCLM PIM Research Laboratory, INEI-ETSII, Universidad de Castilla-La Mancha (UCLM), ETSI Industriales, E-13071, Ciudad Real, Spain
| | - Cristina García
- Ciencia de los Materiales e Ingeniería Metalúrgica, EII, Universidad de Valladolid, C/Paseo del Cauce no 59, E-47011, Valladolid, Spain
| | - Ignacio Garrido
- Escuela de Arquitectura, Departamento de Ingeniería Mecánica, Universidad de Castilla - La Mancha, Av. Carlos III s/n, 45071, Toledo, Spain
| |
Collapse
|
13
|
|
14
|
Swiatkowska I, Martin NG, Henckel J, Apthorp H, Hamshere J, Hart AJ. Blood and plasma titanium levels associated with well-functioning hip implants. J Trace Elem Med Biol 2020; 57:9-17. [PMID: 31546210 DOI: 10.1016/j.jtemb.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Hip implants are usually manufactured from cobalt-chromium and titanium alloys. As the implants wear and corrode, metal debris is released into the surrounding tissue and blood, providing a potential biomarker for their function. Whilst there are laboratory reference levels for blood cobalt and chromium in patients with well and poorly functioning hip implants, there are no such guidelines for titanium. This is despite the increasing use of titanium implants worldwide. PATIENTS AND METHODS We recruited a consecutive series of 95 patients (mean age 71 years, mean time after surgery 8.5 years) with one hip implant type, inserted by the same surgeon. We assessed clinical and radiological outcome, and measured blood and plasma titanium using high resolution inductively-coupled plasma mass spectrometry. RESULTS The upper normal reference limit for blood and plasma titanium was 2.20 and 2.56 μg L-1, respectively, and did not differ significantly between males and females. CONCLUSION We are the first to propose a laboratory reference level for blood and plasma titanium in patients with well-functioning titanium hip implants. This is an essential starting point for further studies to explore the clinical usefulness of blood titanium as a biomarker of orthopaedic implant performance, and comes at a time of considerable controversy regarding the use of certain titanium alloys in hip arthroplasty.
Collapse
Affiliation(s)
- Ilona Swiatkowska
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP Stanmore, UK.
| | - Nicholas G Martin
- Trace Element Laboratory, North West London Pathology, Charing Cross Hospital, W6 8RF London, UK
| | - Johann Henckel
- Royal National Orthopaedic Hospital, Stanmore, HA7 4LP Stanmore, UK
| | | | | | - Alister J Hart
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP Stanmore, UK; Royal National Orthopaedic Hospital, Stanmore, HA7 4LP Stanmore, UK
| |
Collapse
|
15
|
Bandyopadhyay A, Shivaram A, Isik M, Avila JD, Dernell WS, Bose S. Additively manufactured calcium phosphate reinforced CoCrMo alloy: Bio-tribological and biocompatibility evaluation for load-bearing implants. ADDITIVE MANUFACTURING 2019; 28:312-324. [PMID: 31341790 PMCID: PMC6656377 DOI: 10.1016/j.addma.2019.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cobalt-chromium-molybdenum (CoCrMo) alloys are widely used in load-bearing implants; specifically, in hip, knee, and spinal applications due to their excellent wear resistance. However, due to in vivo corrosion and mechanically assisted corrosion, metal ion release occurs and accounts for poor biocompatibility. Therefore, a significant interest to find an alternative to CoCrMo alloy exists. In the present work we hypothesize that calcium phosphate (CaP) will behave as a solid lubricant in CoCrMo alloy under tribological testing, thereby minimizing wear and metal ion release concerns associated with CoCrMo alloy. CoCrMo-CaP composite coatings were processed using laser engineered net shaping (LENS™) system. After LENS™ processing, CoCrMo alloy was subjected to laser surface melting (LSM) using the same LENS™ set-up. Samples were investigated for microstructural features, phase identification, and biocompatibility. It was found that LSM treated CoCrMo improved wear resistance by 5 times. CoCrMo-CaP composites displayed the formation of a phosphorus-based tribofilm. In vitro cell-material interactions study showed no cytotoxic effect. Sprague-Dawley rat and rabbit in vivo study displayed increased osteoid formation for CoCrMo-CaP composites, up to 2 wt.% CaP. Our results show that careful surface modification treatments can simultaneously improve wear resistance and in vivo biocompatibility of CoCrMo alloy, which can correlate to a reduction of metal ion release in vivo.
Collapse
Affiliation(s)
- Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| | - Anish Shivaram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| | - Murat Isik
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| | - Jose D. Avila
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| | | | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering
| |
Collapse
|
16
|
Swiatkowska I, Martin N, Hart AJ. Blood titanium level as a biomarker of orthopaedic implant wear. J Trace Elem Med Biol 2019; 53:120-128. [PMID: 30910194 DOI: 10.1016/j.jtemb.2019.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Joint replacement implants are usually manufactured from cobalt-chromium or titanium alloys. After the device is implanted, wear and corrosion generate metal particles and ions, which are released into local tissue and blood. The metal debris can cause a range of adverse local and systemic effects in patients. RESEARCH PROBLEM In the case of cobalt and chromium, a blood level exceeding 7 μg L-1 indicates potential for local toxicity, and a failing implant. It has been repeatedly suggested in the literature that measurement of titanium could also be used to assess implant function. Despite an increasing interest in this biomarker, and growing use of titanium in orthopaedics, it is unclear what blood concentrations should raise concerns. This is partly due to the technical challenges involved in the measurement of titanium in biological samples. AIM This Review summarises blood/serum titanium levels associated with well-functioning and malfunctioning prostheses, so that the prospects of using titanium measurements to gain insights into implant performance can be evaluated. CONCLUSION Due to inter-laboratory analytical differences, reliable conclusions regarding "normal" and "abnormal" titanium levels in patients with orthopaedic implants are difficult to draw. Diagnosis of symptomatic patients should be based on radiographic evidence combined with blood/serum metal levels.
Collapse
Affiliation(s)
- Ilona Swiatkowska
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP, Stanmore, UK.
| | - Nicholas Martin
- Trace Element Laboratory, Clinical Biochemistry, Charing Cross Hospital, W6 8RF, London, UK
| | - Alister J Hart
- Institute of Orthopaedics and Musculoskeletal Science, University College London, HA7 4LP, Stanmore, UK; Royal National Orthopaedic Hospital, Stanmore, HA7 4LP, UK
| |
Collapse
|
17
|
Arnholt CM, MacDonald DW, Klein GR, Cates HE, Rimnac CM, Kurtz SM, Kocagoz S, Chen AF. What Is the Incidence of Cobalt-Chromium Damage Modes on the Bearing Surface of Contemporary Femoral Component Designs for Total Knee Arthroplasty? J Arthroplasty 2018; 33:3313-3319. [PMID: 29871834 PMCID: PMC6146069 DOI: 10.1016/j.arth.2018.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/25/2018] [Accepted: 05/10/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The purpose of this study was to determine the incidence of metal release in contemporary total knee arthroplasty and the patient-related factors associated with this release. METHODS In total, 256 retrieved cobalt-chromium femoral components were collected through a multi-institutional orthopedic implant retrieval program (implanted: 1-15 years). Implants were mainly revised for loosening (84/256), instability (62/256), and infection (46/256). Third-body damage was assessed using a semiquantitative scoring method. Microscale electro-corrosion damage (MECD) was evaluated using digital optical microscopy. Radii of curvature were measured from representative components to calculate anterior-posterior and medial-lateral ratios. Femoral component surface roughness was measured using a white light interferometer. Using a multivariable linear model, associations between damage score, implant, and patient factors were tested. Spearman's ρ correlation tests were performed to determine the association between roughness measurements and damage score. RESULTS Mild to severe damage was observed in 52% (134/256) of the components. In the multivariable linear model, anterior-posterior ratio (β = -8.07; P < .001), loosening (β = -0.52; P = .006), and patient weight (β = 0.01; P = .007) were associated with damage score. Suspected MECD damage was observed in 82% (209/256) of components. The Ra value (ρ = 0.196; P = .002) and Rq value (ρ = 0.157; P = .012) increased as the damage score increased. CONCLUSION The findings of this retrieval study support that similar damage mechanisms exist in contemporary and long-term total knee arthroplasty devices. Additionally, we observed associations between loosening, anterior-posterior conformity, and patient weight with increased surface damage.
Collapse
Affiliation(s)
- Christina M. Arnholt
- Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA 19104
| | - Daniel W. MacDonald
- Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA 19104
| | - Gregg R. Klein
- Hartzband Center for Hip & Knee Replacement, Paramus, NJ
| | | | - Clare M. Rimnac
- Department of Mechanical and Aerospace Engineering and the Center for the Evaluation of Implant Performance, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106
| | - Steven M. Kurtz
- Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA 19104,Exponent, Inc., 3440 Market Street, Suite 600, Philadelphia, PA 19104
| | | | - Sevi Kocagoz
- Implant Research Center, Drexel University, 3401 Market Street, Suite 345, Philadelphia, PA 19104
| | - Antonia F. Chen
- Brigham and Women’s Hospital, Department of Orthopaedics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
18
|
McCarthy EM, Floyd H, Addison O, Zhang ZJ, Oppenheimer PG, Grover LM. Influence of Cobalt Ions on Collagen Gel Formation and Their Interaction with Osteoblasts. ACS OMEGA 2018; 3:10129-10138. [PMID: 30221240 PMCID: PMC6130901 DOI: 10.1021/acsomega.8b01048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/18/2018] [Indexed: 05/03/2023]
Abstract
Metals on metal implants have long been used in arthroplasties because of their robustness and low dislocation rate. Several relatively low-corrosion metals have been used in arthroplasty, including 316L stainless steel, titanium, and cobalt-chromium-molybdenum alloy. Debris from these implants, however, has been found to cause inflammatory responses leading to unexpected failure rates approaching 10% 7 years surgery. Safety assessment of these materials traditionally relies on the use of simple two-dimensional assays, where cells are grown on the surface of the material over a relatively short time frame. It is now well-known that the composition and stiffness of the extracellular matrix (ECM) have a critical effect on cell function. In this work, we have evaluated how cobalt ions influence the assembly of type I collagen, the principle component of the ECM in bone. We found that cobalt had a significant effect on collagen matrix formation, and its presence results in local variations in collagen density. This increase in heterogeneity causes an increase in localized mechanical properties but a decrease in the bulk stiffness of the material. Moreover, when collagen matrices contained cobalt ions, there was a significant change in how the cells interacted with the collagen matrix. Fluorescence images and biological assays showed a decrease in cell proliferation and viability with an increase in cobalt concentration. We present evidence that the cobalt ion complex interacts with the hydroxyl group present in the carboxylic terminal of the collagen fibril, preventing crucial stabilizing bonds within collagen formation. This demonstrates that the currently accepted toxicity assays are poor predictors of the longer-term biological performance of a material.
Collapse
Affiliation(s)
- Emma M. McCarthy
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
- E-mail: (E.M.M.)
| | - Hayley Floyd
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Owen Addison
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Zhenyu J. Zhang
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Pola Goldberg Oppenheimer
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
| | - Liam M. Grover
- Physical
Sciences for Health, School of Chemistry, Physical Sciences of Imaging in
the Biomedical Sciences, School of Chemistry, Department of BioChemical Engineering,
School of Chemical Engineering, and School of Dentistry, University of Birmingham, Edgbaston, B15 2TT Birmingham, U.K.
- E-mail: (L.M.G.)
| |
Collapse
|
19
|
Xu J, Yang J, Nyga A, Ehteramyan M, Moraga A, Wu Y, Zeng L, Knight MM, Shelton JC. Cobalt (II) ions and nanoparticles induce macrophage retention by ROS-mediated down-regulation of RhoA expression. Acta Biomater 2018; 72:434-446. [PMID: 29649639 PMCID: PMC5953279 DOI: 10.1016/j.actbio.2018.03.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
Histological assessments of synovial tissues from patients with failed CoCr alloy hip prostheses demonstrate extensive infiltration and accumulation of macrophages, often loaded with large quantities of particulate debris. The resulting adverse reaction to metal debris (ARMD) frequently leads to early joint revision. Inflammatory response starts with the recruitment of immune cells and requires the egress of macrophages from the inflamed site for resolution of the reaction. Metal ions (Co2+ and Cr3+) have been shown to stimulate the migration of T lymphocytes but their effects on macrophages motility are still poorly understood. To elucidate this, we studied in vitro and in vivo macrophage migration during exposure to cobalt and chromium ions and nanoparticles. We found that cobalt but not chromium significantly reduces macrophage motility. This involves increase in cell spreading, formation of intracellular podosome-type adhesion structures and enhanced cell adhesion to the extracellular matrix (ECM). The formation of podosomes was also associated with the production and activation of matrix metalloproteinase-9 (MMP9) and enhanced ECM degradation. We showed that these were driven by the down-regulation of RhoA signalling through the generation of reactive oxygen species (ROS). These novel findings reveal the key mechanisms driving the wear/corrosion metallic byproducts-induced inflammatory response at non-toxic concentrations. Statement of significance Adverse tissue responses to metal wear and corrosion products from CoCr alloy implants remain a great challenge to surgeons and patients. Macrophages are the key regulators of these adverse responses to the ions and debris generated. We demonstrated that cobalt, rather than chromium, causes macrophage retention by restructuring the cytoskeleton and inhibiting cell migration via ROS production that affects Rho Family GTPase. This distinctive effect of cobalt on macrophage behaviour can help us understand the pathogenesis of ARMD and the cellular response to cobalt based alloys, which provide useful information for future implant design and biocompatibility testing.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Junyao Yang
- Department of Laboratory Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Agata Nyga
- Division of Surgery and Interventional Sciences, University College London, London NW3 2QG, United Kingdom; Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Mazdak Ehteramyan
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom
| | - Ana Moraga
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom
| | - Yuanhao Wu
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Lingfang Zeng
- Cardiovascular Division, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom.
| | - Martin M Knight
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| | - Julia C Shelton
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
20
|
Bijukumar DR, Segu A, Souza JCM, Li X, Barba M, Mercuri LG, J Jacobs J, Mathew MT. Systemic and local toxicity of metal debris released from hip prostheses: A review of experimental approaches. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:951-963. [PMID: 29339190 PMCID: PMC6017990 DOI: 10.1016/j.nano.2018.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Despite the technological improvements in orthopedic joint replacement implants, wear and corrosion products associated with the metal components of these implants may result in adverse local tissue and perhaps systemic reactions and toxicities. The current review encompasses a literature review of the local and systemic toxicity studies concerning the effect of CoCrMo wear debris released from wear and corrosion of orthopedic implants and prostheses. Release of metallic debris is mainly in the form of micro- and nano-particles, ions of different valences, and oxides composed of Co and Cr. Though these substances alter human biology, their direct effects of these substances on specific tissue types remain poorly understood. This may partially be the consequence of the multivariate research methodologies employed, leading to inconsistent reports. This review proposes the importance of developing new and more appropriate in-vitro methodologies to study the cellular responses and toxicity mediated by joint replacement wear debris in-vivo.
Collapse
Affiliation(s)
- Divya Rani Bijukumar
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Abhijith Segu
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Júlio C M Souza
- Center for MicroElectromechanical Systems (CMEMS-UMINHO), University of Minho, Guimaraes, Portugal
| | - XueJun Li
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA
| | - Mark Barba
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA; OrthoIllinois, Rockford, IL, USA
| | - Louis G Mercuri
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Joshua J Jacobs
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Mathew Thoppil Mathew
- Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL, USA; Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
21
|
Toh WQ, Tan X, Bhowmik A, Liu E, Tor SB. Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review. MATERIALS 2017; 11:ma11010030. [PMID: 29278375 PMCID: PMC5793528 DOI: 10.3390/ma11010030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/12/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022]
Abstract
Orthopedic implants first started out as an all-metal hip joint replacement. However, poor design and machinability as well as unsatisfactory surface finish subjected the all-metal joint replacement to being superseded by a polyethylene bearing. Continued improvement in manufacturing techniques together with the reality that polyethylene wear debris can cause hazardous reactions in the human body has brought about the revival of metal-on-metal (MOM) hip joints in recent years. This has also led to a relatively new research area that links tribology and corrosion together. This article aims at reviewing the commonly used tribochemical methods adopted in the analysis of tribocorrosion and putting forward some of the models and environmental factors affecting the tribocorrosive behavior of CoCrMo alloys, a widely-used class of biomaterial for orthopedic implants.
Collapse
Affiliation(s)
- Wei Quan Toh
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Xipeng Tan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Ayan Bhowmik
- Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Erjia Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Shu Beng Tor
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
22
|
Oskouei RH, Barati MR, Farhoudi H, Taylor M, Solomon LB. A new finding on the in-vivo crevice corrosion damage in a CoCrMo hip implant. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
|