1
|
Safavi MS, Soleimanzadeh Ghazijahani S, Rasooli A. Pulsed electroplating of ZrO 2-reinforced Ni-Cr alloy coatings from the duplex complexing agents-containing bath for engineering applications: Importance of operating conditions. Heliyon 2024; 10:e37631. [PMID: 39309872 PMCID: PMC11416297 DOI: 10.1016/j.heliyon.2024.e37631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
The progress in tribocorrosion performance of the engineering parts is in dire need of improving their surface properties. In the present contribution, Ni-Cr-ZrO2 layers were electrodeposited on St37 steel. The stress was put on optimizing the process factors, including the parameters involved in pulsed current electrodeposition and level of the ZrO2 reinforcing nanoparticles (0-20 g/L) in the bath. The surface characteristics of the electrodeposits were evaluated using FESEM, EDS, AFM, and XRD. The tribomechanical characteristics of the films were determined using a Vickers microhardness tester and pin-on-disk apparatus. The electrochemical behavior of the samples was studied using OCP, EIS, PDP, and immersion techniques. The results demonstrated that the included ZrO2 nanoparticles led to more homogenous, rougher, and defect-free surfaces, while they did not change the phase composition of the alloy electrodeposits. The polarization resistance of the Ni-Cr alloy coating increases by 6.7 times when 10 g/L of the reinforcing nanoparticles is added to the electrolyte. A decrease of ≈42 % in the mean COF value was obtained by the incorporation of 10 g/L ZrO2 nanoparticles into the plating bath. The coating system developed holds the promise to address both technical requirements and health concerns.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | | | - Ali Rasooli
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Investigation of the Applicability of Y2O3–ZrO2 Spherical Nanoparticles as Tribological Lubricant Additives. LUBRICANTS 2022. [DOI: 10.3390/lubricants10070152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Long-term environmental goals will motivate the automotive industry, component suppliers, and lubricating oil developers to reduce the friction of their tribosystems to improve overall efficiency and wear for increased component lifetime. Nanoscale ceramic particles have been shown to form a protective layer on components’ surface that reduces wear rate with its high hardness and chemical resistance. One such ceramic is yttria (Y2O3), which has an excellent anti-wear effect, but due to its rarity it would be extremely expensive to produce engine lubricant made from it. Therefore, part of the yttria is replaced by zirconia (ZrO2) with similar physical properties. The study presents the result of the experimental tribological investigation of nanosized yttria–zirconia ceramic mixture as an engine lubricant additive. Yttria-stabilized zirconia (YSZ) nanoparticle was used as the basis for the ratio of the ceramic mixture, so that the weight ratio of yttria–zirconia in the resulting mixture was determined to be 11:69. After the evaluation of the ball-on-disc tribological measurements, it can be stated that the optimal concentration was 0.4 wt%, which reduced the wear diameter by 30% and the wear volume by 90% at the same coefficient of friction. High-resolution SEM analysis showed a significant amount of zirconia on the surface, but no yttria was found.
Collapse
|
3
|
Friction Issues over the Railway Wheels-Axis Assembly Motion. LUBRICANTS 2022. [DOI: 10.3390/lubricants10020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The frictional issues during motion of the axis-wheels assembly occurring in contact wheel–rail and in bogie bearing were studied. The influence of greases upon friction therein was also considered. The lateral dynamic behavior of the four-axle freight wagon model with two-axle Y25 bogies equipped with swing bolster was analyzed. Simulation models of such a wagon with bogies with and without swing bolsters were elaborated for calculations considering the nonlinearities of wheel–rail contact geometry and nonlinear methods of bogie stability. In these two options, the cases of empty and fully loaded wagon bodies were considered. The lateral dynamic models with 22 and 24 degrees of freedom were considered to determine the nonlinear critical speeds of a freight wagon. It was found that the resistive torque in bearings of the assembly studied varied nonlinearly with wagon speed. During motion along the curve track, values of such a torque can be higher by 50% in case of the wheel under overloading and lower by 50% in case of the wheel under underloading, respectively, compared to those obtained during motion along straight track.
Collapse
|
4
|
Meng Y, Xu J, Ma L, Jin Z, Prakash B, Ma T, Wang W. A review of advances in tribology in 2020–2021. FRICTION 2022; 10:1443-1595. [PMCID: PMC9552739 DOI: 10.1007/s40544-022-0685-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 07/22/2023]
Abstract
Around 1,000 peer-reviewed papers were selected from 3,450 articles published during 2020–2021, and reviewed as the representative advances in tribology research worldwide. The survey highlights the development in lubrication, wear and surface engineering, biotribology, high temperature tribology, and computational tribology, providing a show window of the achievements of recent fundamental and application researches in the field of tribology.
Collapse
Affiliation(s)
- Yonggang Meng
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Jun Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Liran Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Zhongmin Jin
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 China
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT UK
| | - Braham Prakash
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Tianbao Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Wenzhong Wang
- School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing, 100082 China
| |
Collapse
|
5
|
Tribological Behavior of Novel CNTs-Based Lubricant Grease in Steady-State and Fretting Sliding Conditions. LUBRICANTS 2021. [DOI: 10.3390/lubricants9110107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tribological behavior of novel 7.5 wt% carbon nanotube-based lubricant greases in PAO (polyalphaolefin) oil with and without 1.0 wt% MoS2, together with several other commercial greases such as calcium, lithium, were studied. The test results showed a marked reduction of frictional coefficient achieved by the CNTs based grease samples with an average benefit of around 30% compared to conventional greases. The steady state test under 1.00 GPa average contact pressure in a mixed lubrication regime and the fretting test showed the best results in terms of friction reduction obtained by CNTs greases. Steady state tests at higher average contact pressure of 1.67 GPa proved to have a lower friction coefficient for CNTs grease containing MoS2; otherwise CNTs grease without MoS2 showed an average value of CoF comparable to calcium and lithium greases, both in a boundary and a mixed regime. The protection against wear, a considerable decrease (−60%) of reference parameter was measured with CNTs grease with MoS2 (NLGI 2) in comparison with the worst conventional grease and −22% in comparison with the best conventional grease. The data indicated that our novel carbon nanotube greases show superior tribological properties and will have promising applications in the corresponding industry.
Collapse
|
6
|
Abstract
Lightweight materials, such as titanium alloys, magnesium alloys, and aluminium alloys, are characterised by unusual combinations of high strength, corrosion resistance, and low weight. However, some of the grades of these alloys exhibit poor formability at room temperature, which limits their application in sheet metal-forming processes. Lightweight materials are used extensively in the automobile and aerospace industries, leading to increasing demands for advanced forming technologies. This article presents a brief overview of state-of-the-art methods of incremental sheet forming (ISF) for lightweight materials with a special emphasis on the research published in 2015–2021. First, a review of the incremental forming method is provided. Next, the effect of the process conditions (i.e., forming tool, forming path, forming parameters) on the surface finish of drawpieces, geometric accuracy, and process formability of the sheet metals in conventional ISF and thermally-assisted ISF variants are considered. Special attention is given to a review of the effects of contact conditions between the tool and sheet metal on material deformation. The previous publications related to emerging incremental forming technologies, i.e., laser-assisted ISF, water jet ISF, electrically-assisted ISF and ultrasonic-assisted ISF, are also reviewed. The paper seeks to guide and inspire researchers by identifying the current development trends of the valuable contributions made in the field of SPIF of lightweight metallic materials.
Collapse
|
7
|
Kaleli H, Demirtaş S, Uysal V, Karnis I, Stylianakis MM, Anastasiadis SH, Kim DE. Tribological Performance Investigation of a Commercial Engine Oil Incorporating Reduced Graphene Oxide as Additive. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:386. [PMID: 33546353 PMCID: PMC7913578 DOI: 10.3390/nano11020386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
We investigated the tribological behavior of commercialized, fully synthetic engine oil upon the incorporation of reduced graphene oxide in seven different concentrations between 0.01 and 0.2 wt %. Stability of the prepared samples was assessed by turbidimetry and dynamic light scattering measurements, and their tribological properties through a reciprocating tribometer, using a steel ball on special cut steel blocks. The addition of 0.02 wt % of reduced graphene oxide led to an improvement of the tribological behavior compared to the pristine engine oil, by significantly lowering the friction coefficient by 5% in the boundary lubrication regime. Both the surfaces and the reduced graphene oxide additive were thoroughly characterized by microscopic and optical spectroscopy techniques. We also verified that a protective layer was formed between the worn surfaces, due to the presence of reduced graphene oxide. Carbon accumulation and various additive elements such as Ca, Zn, S and P were detected on the rubbing surfaces of both the ball and the block through energy-dispersive X-ray spectroscopy. Finally, it was shown that the wear scar diameter on the surface of the steel ball was lower by 3%, upon testing the engine oil sample containing reduced graphene oxide at concentration 0.02 wt %, compared to the control sample.
Collapse
Affiliation(s)
- Hakan Kaleli
- Faculty of Mechanical Engineering, Automotive Division, Yildiz Technical University, Besiktas, Yildiz, 34349 Istanbul, Turkey; (S.D.); (V.U.)
| | - Selman Demirtaş
- Faculty of Mechanical Engineering, Automotive Division, Yildiz Technical University, Besiktas, Yildiz, 34349 Istanbul, Turkey; (S.D.); (V.U.)
| | - Veli Uysal
- Faculty of Mechanical Engineering, Automotive Division, Yildiz Technical University, Besiktas, Yildiz, 34349 Istanbul, Turkey; (S.D.); (V.U.)
| | - Ioannis Karnis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece; (I.K.); (S.H.A.)
| | - Minas M. Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece; (I.K.); (S.H.A.)
| | - Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece; (I.K.); (S.H.A.)
| | - Dae-Eun Kim
- Center for Nano-Wear, Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea;
| |
Collapse
|
8
|
Copper-Polyurethane Composite Materials: Particle Size Effect on the Physical-Chemical and Antibacterial Properties. Polymers (Basel) 2020; 12:polym12091934. [PMID: 32867134 PMCID: PMC7563828 DOI: 10.3390/polym12091934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
In this work, thermoplastic polyurethane (TPU) composites incorporated with 1.0 wt% Cu particles were synthesized by the melt blending method. The effect of the incorporated copper particle size on the antibacterial, thermal, rheological, and mechanical properties of TPU was investigated. The obtained results showed that (i) the addition of copper particles increased the thermal and mechanical properties because they acted as co-stabilizers of polyurethane (PU) (ii) copper nanoparticles decreased the viscosity of composite melts, and (iii) microparticles > 0.5 µm had a tendency to easily increase the maximum torque and formation of agglomerates. SEM micrographics showed that a good mixture between TPU and copper particles was obtained by the extrusion process. Additionally, copper-TPU composite materials effectively inhibited the growth of the Gram-negative Escherichia coli and the Gram-positive Staphylococcus aureus. Considering that the natural concentration of copper in the blood is in the range of 0.7-0.12 mg/L and that the total migration value of copper particles from TPU was 1000 times lower, the results suggested that TPU nanocomposites could be adequately employed for biomedical applications without a risk of contamination.
Collapse
|