1
|
Wu X, Jia H, Fu W, Li M, Pan Y. Enhanced Tensile Properties, Biostability, and Biocompatibility of Siloxane-Cross-Linked Polyurethane Containing Ordered Hard Segments for Durable Implant Application. Molecules 2023; 28:molecules28062464. [PMID: 36985436 PMCID: PMC10058772 DOI: 10.3390/molecules28062464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
This work developed a series of siloxane-modified polyurethane (PU-Si) containing ordered hard segments by a facile method. The polyaddition between poly(ε-caprolactone) and excess diurethane diisocyanate was carried out to synthesize a polyurethane prepolymer with terminal isocyanate groups, which was then end-capped by 3-aminopropyl triethoxysilane to produce alkoxysilane-terminated polyurethane; the target products of PU-Si were obtained with hydrolysis and the condensation of alkoxysilane groups. The chemical structures were confirmed by FT-IR and XPS, and the effect of the siloxane content or cross-linked degree on the physicochemical properties of the PU-Si films was investigated in detail. The formation of the network structure linked by Si-O-Si bonds and interchain denser hydrogen bonds endowed PU-Si films with fine phase compatibility, low crystallinity, high thermal stability, and excellent tensile properties. Due to the high cross-linked degree and low interfacial energy, the films displayed a high surface water contact angle and low equilibrium water absorption, which resulted in slow hydrolytic degradation rates. Furthermore, the evaluation of protein adsorption and platelet adhesion on the PU-Si film surface presented high resistance to biofouling, indicating superior surface biocompatibility. Consequently, the siloxane-cross-linked polyurethane, which possessed excellent tensile properties, high biostability, and superior biocompatibility, showed great potential to be explored as biomaterials for durable implants.
Collapse
Affiliation(s)
- Xiaofei Wu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Hanxiao Jia
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Wenshuo Fu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Meng Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yitong Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
2
|
Zhiwei L, Ying X, Xiubo H, Ruifan W, Boxiang Y, Li Z, Yuli Z, Lingzhi L, Shuwei W. Study on Preparation and Performances of the Triphenylmethane-4,4′,4″-Triisocyanate (TTI)/Epoxidized Soybean Oil Polyol (ESOP) Adhesives Modified by Vegetable Oil Polyol. J MACROMOL SCI B 2023. [DOI: 10.1080/00222348.2022.2164157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Liu Zhiwei
- University School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Xia Ying
- University School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Hu Xiubo
- Liaoning Hongshan Chemical Co. Ltd, Chaoyang, China
| | - Wang Ruifan
- Liaoning Hongshan Chemical Co. Ltd, Chaoyang, China
| | - Yang Boxiang
- University School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Zhang Li
- University School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Zhang Yuli
- University School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Liu Lingzhi
- University School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| | - Wang Shuwei
- University School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
3
|
Chelike DK, Gurusamy Thangavelu SA. Biodegradable isocyanate-free polyurethane films via a noncatalytic route: facile modified polycaprolactone triol and biobased diamine as precursors. RSC Adv 2022; 13:309-319. [PMID: 36605652 PMCID: PMC9766200 DOI: 10.1039/d2ra05710g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
A facile synthesis of isocyanate free polyurethanes (PU) was executed by the reaction of biodegradable cyclic carbonate and sustainable diamines generated via chemical modification. The biodegradable polyol polycaprolactone triol (PCL) was transformed into a new glycerol carbonate derivative, PCL-(COOGC)3, and subjected to polyaddition with the diamines linalool diamine (LLDA), isosorbide diamine (ISODA) and hexamethylene diamine (HDA). Polyaddition of PCL-(COOGC)3 with the above diamine precursors was conducted via a one-pot reaction under catalyst-free reaction conditions prior to film casting. The above precursors were characterized by Fourier-transform infrared (FTIR) and 1H and 13C nuclear magnetic resonance spectroscopies, high-resolution mass spectrometry and electrospray ionization matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whereas the PU films were studied by attenuated total reflectance-FTIR spectroscopy, solid state 13C NMR, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffractometry, differential scanning calorimetry and thermogravimetric analysis. High onset degradation temperature (T d) values were observed for the PU films PU-1 (345.8 °C), PU-2 (309.6 °C) and PU-3 (344.6 °C), and further studies, including cross-link density, water contact angle, swelling behaviour and biodegradation (phosphate-buffered saline medium, pH = 7.2 at 45 °C) measurements, were conducted.
Collapse
Affiliation(s)
- Dinesh Kumar Chelike
- Department of Chemistry, SRM Institute of Science and TechnologyKattankulathurChennai 603 203Tamil NaduIndia
| | | |
Collapse
|
4
|
Meng Y, Chen K, Yang Y, Jiang T, Hao T, Lu X, Zhang Q. Synthesis and Characterization of Crosslinked Castor Oil-Based Polyurethane Nanocomposites Based on Novel Silane-Modified Isocyanate and Their Potential Application in Heat Insulating Coating. Polymers (Basel) 2022; 14:polym14091880. [PMID: 35567049 PMCID: PMC9105965 DOI: 10.3390/polym14091880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
An isocyanate with trimethoxysilane groups at the side chains (IPDI-M) was synthesized via an addition between the mercaptopropyl trimethoxysilane groups (MPTMS) and IPDI tripolymer (IPDI-T). Then, silane grafted isocyanate as the functional hard segment, castor oil as the soft segment, poly (ethylene adipate) diol (PEA) as the chain extender, and MPTMS as an end-capping reagent were applied to form a series of organosilicon hybrid bio-based polyurethane (CPUSi). The effect of the IPDI-M contents on the thermal stability, mechanical properties, and surface properties of the resulting product was systematically investigated. Profit from the Si–O–Si crosslinked structures formed from MPTMS curing, the tensile strength, and Young’s modulus of the resulting products increased from 9.5 MPa to 22.3 Mpa and 4.05 Mpa to 81.59 Mpa, respectively, whereas the elongation at break decreased from 342% to 101%. The glass transition temperature, thermal stability, transparency, hydrophobicity, and chemical resistance were remarkably strengthened for the obtained organosilicon-modified polyurethane with the increasing MPTMS content. At the end of the work, the thermal insulation coating that was based on CPUSi and ATO can effectively block near-infrared rays, and the temperature difference between the inside and outside of the film reached 15.1 °C.
Collapse
Affiliation(s)
- Yuan Meng
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435005, China
| | - Ken Chen
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
| | - Yuyin Yang
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
| | - Tao Jiang
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
| | - Tonghui Hao
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
| | - Xiaoju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435005, China
- Correspondence: (X.L.); (Q.Z.)
| | - Qunchao Zhang
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
- Correspondence: (X.L.); (Q.Z.)
| |
Collapse
|
5
|
Wang W, Sun S, Hu S, Yang B, He S, Wang R, Zhang L. Unprecedented Strength Polysiloxane-Based Polyurethane for 3D Printing and Shape Memory. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3324-3333. [PMID: 34984903 DOI: 10.1021/acsami.1c22353] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thermoplastic polysiloxane-based polyurethane (Si-TPU) has been attracting a great deal of attention because of the dual advantages of polysiloxane and polyurethane. However, the strength of Si-TPU with a traditional structure is low, and improvement is urgently needed for diverse applications. Herein, we design a polysiloxane-based soft segment (SS) with two urethane groups at the end of the polysiloxane chain, and then we prepare a series of Si-TPUs through a designed SS, isophorone diisocyanate and 1,4-butanediol. Such structural design improves the polarity of the SS and endows more regular hydrogen bonds to the polymer molecular chain. As a result, the prepared Si-TPUs exhibit a good microphase separation structure, unprecedentedly high strength, repeatable processing, noncytotoxicity, shape memory properties, and three-dimensional printing capabilities. Moreover, a maximum tensile strength of Si-TPUs can reach 20.3 MPa, exceeding that of other existing Si-based polymer materials. Si-TPUs show great potential for biomedical applications.
Collapse
Affiliation(s)
- Wencai Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Siao Sun
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shikai Hu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Bin Yang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaoyun He
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Runguo Wang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
- Engineering Research Center of Elastomer Materials on Energy Conservation and Resources, Ministry of Education, Beijing 100029, China
| |
Collapse
|
6
|
Preparation and Properties of Self-Healing Waterborne Polyurethane Based on Dynamic Disulfide Bond. Polymers (Basel) 2021; 13:polym13172936. [PMID: 34502976 PMCID: PMC8434390 DOI: 10.3390/polym13172936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
A self-healing waterborne polyurethane (WPU) materials containing dynamic disulfide (SS) bond was prepared by introducing SS bond into polymer materials. The zeta potential revealed that all the synthesized WPU emulsions displayed excellent stability, and the particle size of them was about 100 nm. The characteristic peaks of N-H and S-S in urethane were verified by FTIR, and the chemical environment of all elements were confirmed by the XPS test. Furthermore, the tensile strength, self-healing process and self-healing efficiency of the materials were quantitatively evaluated by tensile measurements. The results showed that the self-healing efficiency could reach 96.14% when the sample was heat treated at 70 °C for 4 h. In addition, the material also showed a good reprocessing performance, and the tensile strength of the reprocessed film was 3.39 MPa.
Collapse
|
7
|
Taşdemir M, Şenaslan F, Çelik A. Investigation of corrosion and thermal behavior of PU–PDMS-coated AISI 316L. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polydimethylsiloxane (PDMS) is widely used from biomedical to industrial applications due to its nontoxic, hydrophobic, and transparent characteristics. PDMS has good thermal and adhesion properties; however, its mechanical properties are comparatively weak. Therefore, PDMS is blended with various polymers to effectively improve its mechanical properties. In this study, polyurethane (PU)–polydimethylsiloxane (PDMS) blended coatings of different concentrations were applied on the AISI 316L stainless steel surface. Their effects on corrosion and tribocorrosion properties were investigated in Ringer’s solutions. The blended polymer coatings were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The thermal properties of samples were examined by TGA and DSC. The surface images and cross-sectional were investigated using scanning electron microscopy (SEM). Tribocorrosion tests were carried out at open circuit potential (OCP). It was determined that hydrophobicity and thermal stability of polymer coating increased, while corrosion resistance slightly decreased with the increasing PDMS concentration in the polymer blended. The friction coefficient of blends decreased as the PU concentration increased. As a result, it was determined that the polymer-coated samples containing up to 50% PDMS prevented corrosive wear under the OCP wear test in Ringer’s solutions.
Collapse
Affiliation(s)
- Muharrem Taşdemir
- Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Gumushane University , 29100 , Gumushane , Turkey
| | - Fatih Şenaslan
- Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Gumushane University , 29100 , Gumushane , Turkey
| | - Ayhan Çelik
- Department of Mechanical Engineering, Faculty of Engineering, Ataturk University , 25030 , Erzurum , Turkey
| |
Collapse
|
8
|
Walter M, Friess F, Krus M, Zolanvari SMH, Grün G, Kröber H, Pretsch T. Shape Memory Polymer Foam with Programmable Apertures. Polymers (Basel) 2020; 12:E1914. [PMID: 32854329 PMCID: PMC7565147 DOI: 10.3390/polym12091914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022] Open
Abstract
In this work, a novel type of polyester urethane urea (PEUU) foam is introduced. The foam was produced by reactive foaming using a mixture of poly(1,10-decamethylene adipate) diol and poly(1,4-butylene adipate) diol, 4,4'-diphenylmethane diisocyanate, 1,4-butanediol, diethanolamine and water as blowing agent. As determined by differential scanning calorimetry, the melting of the ester-based phases occurred at temperatures in between 25 °C and 61 °C, while the crystallization transition spread from 48 °C to 20 °C. The mechanical properties of the foam were simulated with the hyperplastic models Neo-Hookean and Ogden, whereby the latter showed a better agreement with the experimental data as evidenced by a Pearson correlation coefficient R² above 0.99. Once thermomechanically treated, the foam exhibited a maximum actuation of 13.7% in heating-cooling cycles under a constant external load. In turn, thermal cycling under load-free conditions resulted in an actuation of more than 10%. Good thermal insulation properties were demonstrated by thermal conductivities of 0.039 W·(m·K)-1 in the pristine state and 0.052 W·(m·K)-1 in a state after compression by 50%, respectively. Finally, three demonstrators were developed, which closed an aperture or opened it again simply by changing the temperature. The self-sufficient material behavior is particularly promising in the construction industry, where programmable air slots offer the prospect of a dynamic insulation system for an adaptive building envelope.
Collapse
Affiliation(s)
- Mario Walter
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany; (M.W.); (F.F.)
| | - Fabian Friess
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany; (M.W.); (F.F.)
| | - Martin Krus
- Fraunhofer Institute for Building Physics IBP, Fraunhoferstraße 10, 83626 Valley, Germany; (M.K.); (S.M.H.Z.); (G.G.)
| | | | - Gunnar Grün
- Fraunhofer Institute for Building Physics IBP, Fraunhoferstraße 10, 83626 Valley, Germany; (M.K.); (S.M.H.Z.); (G.G.)
| | - Hartmut Kröber
- Fraunhofer Institute for Chemical Technology ICT, Joseph-von-Fraunhofer-Straße 7, 76327 Pfinztal, Germany;
| | - Thorsten Pretsch
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany; (M.W.); (F.F.)
| |
Collapse
|
9
|
Gradinaru LM, Barbalata-Mandru M, Drobota M, Aflori M, Spiridon M, Gradisteanu Pircalabioru G, Bleotu C, Butnaru M, Vlad S. Preparation and Evaluation of Nanofibrous Hydroxypropyl Cellulose and β-Cyclodextrin Polyurethane Composite Mats. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E754. [PMID: 32326486 PMCID: PMC7221721 DOI: 10.3390/nano10040754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
A series of nanofibrous composite mats based on polyurethane urea siloxane (PUUS), hydroxypropyl cellulose (HPC) and β-cyclodextrin (β-CD) was prepared using electrospinning technique. PUUS was synthesized by two steps solution polymerization procedure from polytetramethylene ether glycol (PTMEG), dimethylol propionic acid (DMPA), 4,4'-diphenylmethane diisocyanate (MDI) and 1,3-bis-(3-aminopropyl) tetramethyldisiloxane (BATD) as chain extender. Then, the composites were prepared by blending PUUS with HPC or βCD in a ratio of 9:1 (w/w), in 15% dimethylformamide (DMF). The PUUS and PUUS based composite solutions were used for preparation of nanofibrous mats. In order to identify the potential applications, different techniques were used to evaluate the chemical structure (Fourier transform infrared-attenuated total reflectance spectroscopy-FTIR-ATR), morphological structure (Scanning electron microscopy-SEM and Atomic force microscopy-AFM), surface properties (contact angle, dynamic vapors sorption-DVS), mechanical characteristics (tensile tests), thermal (differential scanning calorimetry-DSC) and some preliminary tests for biocompatibility and microbial adhesion.
Collapse
Affiliation(s)
- Luiza Madalina Gradinaru
- “P. Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.-M.); (M.D.); (M.A.); (M.S.); (M.B.)
| | - Mihaela Barbalata-Mandru
- “P. Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.-M.); (M.D.); (M.A.); (M.S.); (M.B.)
| | - Mioara Drobota
- “P. Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.-M.); (M.D.); (M.A.); (M.S.); (M.B.)
| | - Magdalena Aflori
- “P. Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.-M.); (M.D.); (M.A.); (M.S.); (M.B.)
| | - Maria Spiridon
- “P. Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.-M.); (M.D.); (M.A.); (M.S.); (M.B.)
| | | | - Coralia Bleotu
- Sanimed International Impex S.R.L, 70F Bucuresti—Măgurele, 051434 Bucuresti, Romania; (G.G.P.); (C.B.)
- “Stefan S Nicolau” Institute of Virology, 285 Mihai Bravu, 030304 Bucuresti, Romania
| | - Maria Butnaru
- “P. Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.-M.); (M.D.); (M.A.); (M.S.); (M.B.)
- Faculty of Medical Bioengineering, “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Stelian Vlad
- “P. Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.B.-M.); (M.D.); (M.A.); (M.S.); (M.B.)
| |
Collapse
|
10
|
Abstract
In this paper, hydrophobic nanocomposite coatings based on polyurethane (PUR) modified by nano-silica and silane-based compounds were manufactured by spraying. The main challenge was to assess and improve the hydrophobic as well as anti-icing properties of initially hydrophilic polymer coatings. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy (SEM), optical profilometry and X-ray photoelectron spectroscopy (XPS). The results obtained showed that in order to achieve hydrophobicity, appropriate amounts of nano-silica must be incorporated in the coating, and complete coverage by nano-silica particles is necessary for achieving hydrophobicity. Coating adhesion and the durability of the hydrophobic behaviour were also studied by scratch test and frosting/defrosting cycles, respectively. The results show that use of both nano-silica and silane-based compounds improve the hydrophobic and anti-icing properties of the coating as compared to a non-modified PUR topcoat. A synergistic effect of both additives was observed. It was also found that the anti-icing behaviour does not necessarily correlate with surface roughness and the materials’ wetting properties.
Collapse
|
11
|
Zhao H, Zhao S, Hu G, Zhang Q, Liu Y, Huang C, Li W, Jiang T, Wang S. Synthesis and characterization of waterborne polyurethane/polyhedral oligomeric silsesquioxane composites with low dielectric constants. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hui Zhao
- College of Light Industry and Food EngineeringGuangxi University Nanning China
- School of Materials Science & EngineeringHubei University Wuhan China
| | - Si‐Qi Zhao
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| | - Guo‐Hua Hu
- School of Materials Science & EngineeringHubei University Wuhan China
- Laboratory of Reactions and Process Engineering (LRGP CNRS UMR 7274)CNRS‐University of Lorraine Nancy France
| | - Qun‐Chao Zhang
- School of Materials Science & EngineeringHubei University Wuhan China
| | - Yang Liu
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| | - Chong‐Xing Huang
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| | - Wei Li
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| | - Tao Jiang
- School of Materials Science & EngineeringHubei University Wuhan China
| | - Shuang‐Fei Wang
- College of Light Industry and Food EngineeringGuangxi University Nanning China
| |
Collapse
|
12
|
In Situ Incorporation of Diamino Silane Group into Waterborne Polyurethane for Enhancing Surface Hydrophobicity of Coating. Molecules 2019; 24:molecules24091667. [PMID: 31035347 PMCID: PMC6539568 DOI: 10.3390/molecules24091667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022] Open
Abstract
A series of waterborne polyurethanes (WPU) with crosslinked siloxane were obtained through introducing 3-(2-aminoethylamino)propyldimethoxymethylsilane (APTS) into WPU by in situ polymerization. The properties of WPU modified by APTS were studied through a variety of experimental methods. The water contact angle of the WPU coating surface increased from 64° to 86°, and the water resistance reduced to 3.90% when 3 wt% APTS was added, which improved the coating surface hydrophobicity. Firstly, Fourier transform infrared (FT-IR) and 1H-NMR spectra demonstrated the successful incorporation of APTS to polyurethanes and completed the hydrolytic condensation reaction-generated Si-O-Si crosslinking structure. Furthermore, the surface energy of the membrane was reduced when the crosslinking structure migrated and enriched on the surface of film. Besides, the crosslinking structure was abundant, and the distribution of siloxane in WPU was more uniform.
Collapse
|
13
|
Zheng Y, Liu C, Miao L, Lin H, Gao J, Wang X, Chen J, Wu S, Li X, Cai H. Cost effective synthesis of p-type Zn-doped MgAgSb by planetary ball-milling with enhanced thermoelectric properties. RSC Adv 2018; 8:35353-35359. [PMID: 35547930 PMCID: PMC9088033 DOI: 10.1039/c8ra06765a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/28/2018] [Indexed: 01/13/2023] Open
Abstract
As promising candidates for the progress of low-temperature thermoelectric devices, MgAgSb-based thermoelectric materials have drawn a great deal of attention. However, due to complicated phase changes, high content of impurities and high volatilization of Mg, it is difficult to synthesize pure phase MgAgSb-based thermoelectric materials via conventional methods. Here, MgAgSb alloy was successfully synthesized by a combination of common planetary ball milling and spark plasma sintering. Furthermore, the introduction of Zn improved the purity of alloys, leading to optimization of the electrical transport properties. As a result, the power factor was improved from 1087 μW m−1 K−2 for MgAg0.9Sb0.95 to 1394 μW m−1 K−2 for Mg0.97Zn0.03Ag0.9Sb0.95 at 473 K, and the ZT reached ∼0.7 at 473 K. These results suggest that MgAgSb-based thermoelectric materials have a good thermoelectric application potential and this study can be used as guidance for the synthesis and performance improvement of other thermoelectric materials. Our synthesis route sets forth a new avenue for accelerating commercial applications of MgAgSb-based thermoelectric power generation or refrigeration. Zn doped MgAgSb with improved purity and thermoelectric performance was synthesized via common planetary ball milling and spark plasma sintering.![]()
Collapse
|
14
|
Zhao H, Huang D, Hao TH, Hu GH, Ye GB, Jiang T, Zhang QC. Synthesis and investigation of well-defined silane terminated and segmented waterborne hybrid polyurethanes. NEW J CHEM 2017. [DOI: 10.1039/c7nj01466j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The properties of waterborne polyurethanes were improved significantly by incorporating silane both in the backbone and side chains.
Collapse
Affiliation(s)
- Hui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials
- School of Materials Science & Engineering
- Hubei University
- Wuhan 430062
| | - Da Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials
- School of Materials Science & Engineering
- Hubei University
- Wuhan 430062
| | - Tong-Hui Hao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials
- School of Materials Science & Engineering
- Hubei University
- Wuhan 430062
| | - Guo-Hua Hu
- Laboratory of Reactions and Process Engineering (CNRS UMR 7274)
- CNRS-University of Lorraine
- ENSIC
- 54001 Nancy Cedex
- France
| | - Gong-bo Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials
- School of Materials Science & Engineering
- Hubei University
- Wuhan 430062
| | - Tao Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials
- School of Materials Science & Engineering
- Hubei University
- Wuhan 430062
| | - Qun-Chao Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry of Education Key Laboratory of Green Preparation and Application for Functional Materials
- School of Materials Science & Engineering
- Hubei University
- Wuhan 430062
| |
Collapse
|