1
|
Jung Y, Kim S, Kim S, Kim Y, Hwang JB, Kim DY, Lee S. Long-Term Selective Photoelectrochemical Glycerol Oxidation via Oxygen Vacancy Modulated Tungsten Oxide with Self-Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409082. [PMID: 39449224 DOI: 10.1002/smll.202409082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The photoelectrochemical selective oxidation of biowaste glycerol into the high value-added material, along with hydrogen production, holds significant promise for advancing renewable and sustainable energy technologies. Here, the surface oxygen state of tungsten oxide is modified to selectively oxidize glycerol into glyceraldehyde, a high-value-added material, and the selectivity is maintained over a prolonged period using the photo-stimulated self-recovery capability. The surface-coordinated photoelectrode exhibits high charge transfer efficiency to glycerol and favorable glycerol adsorption capacity, enabling the selective conversion of glycerol. At 1.2 VRHE in a 2 m glycerol electrolyte adjusted to pH 2, the tungsten oxide photoelectrode achieves a photocurrent density of 2.58 mA cm-2 and a production rate of 378.8 mmol m-2 h-1 with selectivity of 86.1%. The high selectivity is preserved for 18 h by utilizing the self-healing capability of tungsten oxide to restore initial states modified by photoelectrochemical oxidation. This work sheds light on the design of highly efficient metal oxide photoelectrodes for selective biomass oxidation over extended periods.
Collapse
Affiliation(s)
- Yoonsung Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seunghwan Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seungkyu Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Yejoon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jun Beom Hwang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Sanghan Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
2
|
Li H, Li Y, Dai X, Xu X, Peng Q. Ethanol Processable Inorganic-Organic Hybrid Hole Transporting Layers Enabled 20.12 % Efficiency Organic Solar Cells. Angew Chem Int Ed Engl 2024:e202416866. [PMID: 39363721 DOI: 10.1002/anie.202416866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
In this study, a high-performance inorganic-organic hybrid hole transporting layer (HTL) was developed using ethanol-soluble alkoxide precursors and a self-assembled monolayer (SAM). Three metal oxides-vanadium oxide (VOx), niobium oxide (Nb2O5), and tantalum oxide (Ta2O5)-were synthesized through successive low-temperature (100 °C) thermal annealing (TA) and UV-ozone (UVO) treatments of their respective precursors: vanadium oxytriethoxide (EtO-V), niobium ethoxide (EtO-Nb), and tantalum ethoxide (EtO-Ta). Among these, the Nb2O5 film exhibited excellent transmittance, a high work function, and good conductivity, along with a more compact and uniform structure featuring fewer interfacial defects, which facilitated efficient charge extraction and transport. Furthermore, the deposition of a SAM of (2-(9H-carbazol-9-yl)ethyl)phosphonic acid (2PACz) on top of Nb2O5 further passivated defects, enhancing interfacial contact with the photoactive layer. The resulting inorganic-organic hybrid HTL of Nb2O5/2PACz demonstrated excellent compatibility with various photoactive blends, achieving impressive power conversion efficiencies of 19.44 %, 19.18 %, and 20.12 % for the PM6:L8-BO, PM6:BTP-eC9, and D18:BTP-eC9 based organic solar cells, respectively. 20.12 % is the best performance for bulk heterojunction organic solar cells with binary components as the photoactive layer.
Collapse
Affiliation(s)
- Hongjia Li
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yinfeng Li
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingjian Dai
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| |
Collapse
|
3
|
Nareejun W, Ponchio C, Mizuhata M, Minamimoto H. Optimizations of Liquid Phase Deposition Processes for Enhanced Photoelectrocatalytic Activities of Tungsten Oxide Thin Films. ACS OMEGA 2024; 9:38788-38797. [PMID: 39310131 PMCID: PMC11411532 DOI: 10.1021/acsomega.4c04738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
This study focuses on the preparation of tungsten oxide (WO3) as the photoanode for water oxidations by the liquid phase deposition (LPD) technique and its optimizations to improve the photoelectrochemical performance. The alternative precursor large stock solution process was achieved to simplify the LPD process for WO3 thin film preparation. The effect of boric acid in the precursor solutions on the physicochemical properties of the deposited WO3 thin films was investigated. As a result, we found that the optimized concentration of boric acid realized the highest photoelectrochemical performance. Through the optimizations of reaction conditions and surface analyses, we concluded that the preparations of a semiconductor film via the LPD technique had the potential to obtain high-performance photoelectrocatalytic applications.
Collapse
Affiliation(s)
- Watcharapong Nareejun
- Department
of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Khlong 6, Thanyaburi, Pathum Thani 12120, Thailand
| | - Chatchai Ponchio
- Department
of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Khlong 6, Thanyaburi, Pathum Thani 12120, Thailand
- Advanced
Photochemical and Electrochemical Materials (APEM) Research Unit,
Faculty of Science and Technology, Rajamangala
University of Technology Thanyaburi, Klong 6, Thanyaburi, Khlong Hok, Pathum Thani 12110, Thailand
| | - Minoru Mizuhata
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodai-cho 1-1, Nada-ku,
Kobe 657-8501, Japan
| | - Hiro Minamimoto
- Department
of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodai-cho 1-1, Nada-ku,
Kobe 657-8501, Japan
| |
Collapse
|
4
|
Mandal R, Mandal A, Dutta A, Sivakumar R, Srivastava SK, Som T. Controllable physicochemical properties of WO x thin films grown under glancing angle. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:350-359. [PMID: 38590430 PMCID: PMC10999991 DOI: 10.3762/bjnano.15.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
In this work, various physicochemical properties are investigated in nanostructured WOx thin films prepared by radio-frequency magnetron sputtering for optoelectronic applications. A glancing angle of 87° is employed to grow films of different thicknesses, which are then exposed to post-growth annealing. Detailed local probe analyses in terms of morphology and work function of WOx films are carried out to investigate thickness-dependent property modulations of the as-deposited and annealed films. The analyses show a reasonably good correlation with photoelectron spectroscopic measurements on the films and the bulk I-V characteristics acquired on a series of WOx/p-Si heterojunction diodes. The presence of a critical WOx thickness is identified to regulate the rectification ratio values at the WOx/p-Si heterostructures and increase in series resistance within the bulk of the films. The present study provides valuable insights to correlate optical, electrical, and structural properties of WOx thin films, which will be beneficial for fabricating WOx-based optoelectronic devices, including photovoltaic cells.
Collapse
Affiliation(s)
- Rupam Mandal
- SUNAG Laboratory, Institute of Physics, Bhubaneswar 751 005, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Aparajita Mandal
- SUNAG Laboratory, Institute of Physics, Bhubaneswar 751 005, Odisha, India
| | - Alapan Dutta
- SUNAG Laboratory, Institute of Physics, Bhubaneswar 751 005, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | | | | | - Tapobrata Som
- SUNAG Laboratory, Institute of Physics, Bhubaneswar 751 005, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| |
Collapse
|
5
|
Shao S, Yan L, Zhang L, Zhang J, Li Z, Kim HW, Kim SS. Utilizing Data Mining for the Synthesis of Functionalized Tungsten Oxide with Enhanced Oxygen Vacancies for Highly Sensitive Detection of Triethylamine. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6098-6112. [PMID: 38266747 DOI: 10.1021/acsami.3c16021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The optimal combination of metal ions and ligands for sensing materials was estimated by using a data-driven model developed in this research. This model utilized advanced computational algorithms and a data set of 100,000 literature pieces. The semiconductor metal oxide (SMO) that is most suitable for detecting triethylamine (TEA) with the highest probability was identified by using the Word2vec model, which employed the maximum likelihood method. The loss function of the probability distribution was minimized in this process. Based on the analysis, a novel hierarchical nanostructured tungsten-based coordination with 2,5-dihydroxyterephthalic acid (W-DHTA) was synthesized. This synthesis involved a postsynthetic hydrothermal treatment (psHT) and the self-assembly of tungsten oxide nanorods. The tungsten oxide nanorods had a significant number of oxygen vacancies. Various techniques were used to characterize the synthesized material, and its sensing performance toward volatile organic compound (VOC) gases was evaluated. The results showed that the functionalized tungsten oxide exhibited an exceptionally high sensitivity and selectivity toward TEA gas. Even in a highly disturbed environment, the detection limit for TEA gas was as low as 40 parts per billion (ppb). Furthermore, our findings suggest that the control of oxygen vacancies in sensing materials plays a crucial role in enhancing the sensitivity and selectivity of gas sensors. This approach was supported by the utilization of density functional theory (DFT) computation and machine learning algorithms to assess and analyze the performance of sensor devices, providing a highly efficient and universally applicable research methodology for the development and design of next-generation functional materials.
Collapse
Affiliation(s)
- Shaofeng Shao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Liangwei Yan
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Lei Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Jun Zhang
- College of Physics, Centre for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Zuoxi Li
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Maity S, Sarkar K, Kumar P. WO 3-NP-activated WS 2 layered heterostructures for efficient broadband (254 nm-940 nm) photodetection. NANOSCALE 2023; 15:16068-16079. [PMID: 37750822 DOI: 10.1039/d3nr03754a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Broadband photodetection including deep UV using Si is technically challenging due to its negligible optical absorption at 254 nm and the requirement of heterogeneous integration with very high bandgap photoactive materials. However, monolithic integration of high-bandgap semiconductors on Si is not possible due to CMOS fabrication incompatibility. Comprehensive experimental studies to achieve broadband photodetection including deep UV on Si are lacking in the literature. Here for the first time we have investigated 2D/0D heterojunctions of WS2/WO3 on a Si platform both experimentally and theoretically and established the charge transfer mechanism between them. Transient photocarrier decay experiments demonstrate effective quenching of excited photocarriers generated in WO3/WS2, signifying its utility in facilitating carrier transport, which is further evidenced by charge density calculation from DFT simulation. Our designed vertically aligned p-Si/WS2/WO3 heterojunction-based photodetector exhibits an excellent photosensitivity performance with a broad spectral response ranging from deep ultraviolet (254 nm) to near infrared (940 nm) wavelengths, and it not only provides a peak responsivity of 251 A W-1 and a specific detectivity of 1.89 × 014 Jones, but also possesses a rapid response speed with a rise/fall time of 0.64/0.48 s at 365 nm with a bias of 2 volt.
Collapse
Affiliation(s)
- Sukhendu Maity
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Krishnendu Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Praveen Kumar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
7
|
Jung H, Lee J, Park J, Shin K, Kim HT, Cho E. A Mesoporous Tungsten Oxynitride Nanofibers/Graphite Felt Composite Electrode with High Catalytic Activity for the Cathode in Zn-Br Flow Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208280. [PMID: 36965037 DOI: 10.1002/smll.202208280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
High electrochemical polarization during a redox reaction in the electrode of aqueous zinc-bromine flow batteries largely limits its practical implementation as an effective energy storage system. This study demonstrates a rationally-designed composite electrode that exhibits a lower electrochemical polarization by providing a higher number of catalytically-active sites for faster bromine reaction, compared to a conventional graphite felt cathode. The composite electrode is composed of electrically-conductive graphite felt (GF) and highly active mesoporous tungsten oxynitride nanofibers (mWONNFs) that are prepared by electrospinning and simple heat treatments. Addition of the 1D mWONNFs to porous GF produces a web-like structure that significantly facilitates the reaction kinetics and ion diffusion. The cell performance achieves in this study demonstrated high energy efficiencies of 89% and 80% at current densities of 20 and 80 mA cm-2 , respectively. Furthermore, the cell can also be operated at a very high current density of 160 mA cm-2 , demonstrating an energy efficiency of 62%. These results demonstrate the effectiveness of the mWONNF/GF composite as the electrode material in zinc-bromine flow batteries.
Collapse
Affiliation(s)
- HyunJin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science & Technology, Daejeon, 34141, Republic of Korea
- Lotte Chemical Innovation Center, Seoul, 157210, Republic of Korea
| | - JaeHyuk Lee
- Lotte Chemical Innovation Center, Seoul, 157210, Republic of Korea
| | - JaeYun Park
- Lotte Chemical Innovation Center, Seoul, 157210, Republic of Korea
| | - Kyungjae Shin
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology, Daejeon, 34141, Republic of Korea
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology, Daejeon, 34141, Republic of Korea
| | - EunAe Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science & Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Mekala SP, Prabu M, Gawali SD, Gopakumar K, Gogoi P, Bhatkar AR, Mohapatra G, Unnikrishanan E, Raja T. Green synthesis of cyclohexanone to adipic acid over Fe–W oxides incorporated mesoporous carbon support. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
9
|
Abd-Elhamid AI, El-Gendi H, Abdallah AE, El-Fakharany EM. Novel Nanocombinations of l-Tryptophan and l-Cysteine: Preparation, Characterization, and Their Applications for Antimicrobial and Anticancer Activities. Pharmaceutics 2021; 13:1595. [PMID: 34683888 PMCID: PMC8540933 DOI: 10.3390/pharmaceutics13101595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Tungsten oxide WO3 nanoparticles (NPs) were prepared in a form of nanosheets with homogeneous size and dimensions in one step through acid precipitation using a cation exchange column. The resulting WO3 nanosheet surface was decorated with one of the two amino acids (AAs) l-tryptophan (Trp) or l-cysteine (Cys) and evaluated for their dye removal, antimicrobial, and antitumor activities. A noticeable improvement in the biological activity of WO3 NPs was detected upon amino acid modification compared to the original WO3. The prepared WO3-Trp and WO3-Cys exhibited strong dye removal activity toward methylene blue and safranin dyes with complete dye removal (100%) after 6 h. WO3-Cys and WO3-Trp NPs revealed higher broad-spectrum antibacterial activity toward both Gram-negative and Gram-positive bacteria, with strong antifungal activity toward Candida albicans. Anticancer results of the modified WO3-Cys and WO3-Trp NPs against various kinds of cancer cells, including MCF-7, Caco-2, and HepG-2 cells, indicate that they have a potent effect in a dose-dependent manner with high selectivity to cancer cells and safety against normal cells. The expression levels of E2F2 and Bcl-2 genes were found to be suppressed after treatment with both WO3-Cys and WO3-Trp NPs more than 5-FU-treated cells. While expression level of the p53 gene in all tested cells was up-regulated after treatment 5-8 folds more as compared to untreated cells. The docking results confirmed the ability of both NPs to bind to the p53 gene with relevant potency in binding to other tested gens and participation of cysteine SH-functional group in such interaction.
Collapse
Affiliation(s)
- Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab 21934, Egypt;
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab 21934, Egypt
| | - Abdallah E. Abdallah
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab 21934, Egypt
| |
Collapse
|
10
|
|
11
|
Mariyappan V, Jeyapragasam T, Chen SM, Murugan K. Mo-W-O nanowire intercalated graphene aerogel nanocomposite for the simultaneous determination of dopamine and tyrosine in human urine and blood serum sample. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Improved charge carrier separation of Schottky junction containing a bimetallic Cu-Pd alloy and N-Bi2WO6 square-shaped discs for photocatalytic H2 performance. J Colloid Interface Sci 2021; 593:276-289. [DOI: 10.1016/j.jcis.2021.02.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/13/2021] [Accepted: 02/28/2021] [Indexed: 02/08/2023]
|
13
|
Roy A, Bhandari S, Ghosh A, Sundaram S, Mallick TK. Incorporating Solution-Processed Mesoporous WO3 as an Interfacial Cathode Buffer Layer for Photovoltaic Applications. J Phys Chem A 2020; 124:5709-5719. [DOI: 10.1021/acs.jpca.0c02912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Anurag Roy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Shubhranshu Bhandari
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Aritra Ghosh
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Senthilarasu Sundaram
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| | - Tapas K. Mallick
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| |
Collapse
|
14
|
Nubla K, Sandhyarani N. Ag nanoparticles anchored Ag2WO4 nanorods: An efficient methanol tolerant and durable Pt free electro-catalyst toward oxygen reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Li T, Chen Z, Wang Y, Tu J, Deng X, Li Q, Li Z. Materials for Interfaces in Organic Solar Cells and Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3301-3326. [PMID: 31845796 DOI: 10.1021/acsami.9b19830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interface engineering is very important to the high performance of organic optoelectronic devices that are commonly composed of multilayer thin solid films. Interfacial materials are particularly crucial for interface engineering, and a variety of materials have been employed at the interface to accomplish various different functions. This Review summarizes various materials for the interfaces and some of the latest progress in organic solar cells (OSCs) and organic photodetectors (OPDs).
Collapse
Affiliation(s)
- Tianhao Li
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Zixuan Chen
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Yangyang Wang
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Jin Tu
- Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Xianyu Deng
- Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering , Harbin Institute of Technology , Shenzhen 518055 , China
| | - Qianqian Li
- Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
| | - Zhen Li
- Sauvage Center for Molecular Sciences, Department of Chemistry , Wuhan University , Wuhan 430072 , China
- Institute of Molecular Aggregation Science , Tianjin University , Tianjin 30072 , China
| |
Collapse
|
16
|
Guo X, Liang T. Electrophoresis Assembly of Novel Superhydrophobic Molybdenum Trioxide (MoO₃) Films with Great Stability. MATERIALS 2019; 12:ma12030336. [PMID: 30678163 PMCID: PMC6384839 DOI: 10.3390/ma12030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/27/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
This work presents a hydrothermal synthesis approach to produce novel schistose molybdenum trioxide (MoO₃) powders with wide application, and introduces a facile electrophoresis assembly technique to construct the superhydrophobic MoO₃ films (SMFs) with contact angle up to 169 ± 1° at normal pressure and temperature. The microstructures and chemical compositions of product were analyzed by field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD). The wettability and stability studies indicate that the SMFs all show great resistance in various environments with adjusting factors, including droplets with different surface tension, pH, relative humidity, etc., and the stability can be maintained at least for five months. Notably, this paper will provides a valuable reference for designing novel oxide powders and their high-efficient hydrophobic film formation with self-cleaning or water proof properties.
Collapse
Affiliation(s)
- Xiaogang Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
- College of Chemistry and Environmental Engineering, Institute of Functional Materials, Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China.
| | - Taotao Liang
- Faculty of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
Ying YL, Pung SY, Ong MT, Pung YF. Rhodomine B dye removal and inhibitory effect on B. subtilis and S. aureus by WOx nanoparticles. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Efficient and stable planar p-i-n perovskite solar cells by doping tungsten compound into PEDOT:PSS to facilitate perovskite crystalline. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Wet-Chemical Synthesis of 3D Stacked Thin Film Metal-Oxides for All-Solid-State Li-Ion Batteries. MATERIALS 2017; 10:ma10091072. [PMID: 28895931 PMCID: PMC5615726 DOI: 10.3390/ma10091072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022]
Abstract
By ultrasonic spray deposition of precursors, conformal deposition on 3D surfaces of tungsten oxide (WO3) negative electrode and amorphous lithium lanthanum titanium oxide (LLT) solid-electrolyte has been achieved as well as an all-solid-state half-cell. Electrochemical activity was achieved of the WO3 layers, annealed at temperatures of 500 °C. Galvanostatic measurements show a volumetric capacity (415 mAh·cm−3) of the deposited electrode material. In addition, electrochemical activity was shown for half-cells, created by coating WO3 with LLT as the solid-state electrolyte. The electron blocking properties of the LLT solid-electrolyte was shown by ferrocene reduction. 3D depositions were done on various micro-sized Si template structures, showing fully covering coatings of both WO3 and LLT. Finally, the thermal budget required for WO3 layer deposition was minimized, which enabled attaining active WO3 on 3D TiN/Si micro-cylinders. A 2.6-fold capacity increase for the 3D-structured WO3 was shown, with the same current density per coated area.
Collapse
|