1
|
He Z, Wang N, Mu L, Wang Z, Su J, Chen Y, Luo M, Wu Y, Lan X, Mao J. Porous polydimethylsiloxane films with specific surface wettability but distinct regular physical structures fabricated by 3D printing. Front Bioeng Biotechnol 2023; 11:1272565. [PMID: 37811382 PMCID: PMC10551163 DOI: 10.3389/fbioe.2023.1272565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Porous polydimethylsiloxane (PDMS) films with special surface wettability have potential applications in the biomedical, environmental, and structural mechanical fields. However, preparing porous PDMS films with a regular surface pattern using conventional methods, such as chemical foaming or physical pore formation, is challenging. In this study, porous PDMS films with a regular surface pattern are designed and prepared using 3D printing to ensure the formation of controllable and regular physical structures. First, the effect of the surface wettability of glass substrates with different surface energies (commercial hydrophilic glass and hydrophobic glass (F-glass) obtained by treating regular glass with 1H,1H,2H,2H-perfluorooctyl-trichlorosilane) on the structural characteristics of the 3D printed PDMS filaments is investigated systematically. Additionally, the effect of the printing speed and the surface wettability of the glass substrate on the PDMS filament morphology is investigated synchronously. Next, using the F-glass substrate and an optimized printing speed, the effects of the number of printed layers on both the morphologies of the individual PDMS filaments and porous PDMS films, and the surface wettability of the films are studied. This study reveals that regularly patterned porous PDMS films with distinct structural designs but the same controllable surface wettability, such as anisotropic surface wettability and superhydrophobicity, can be easily fabricated through 3D printing. This study provides a new method for fabricating porous PDMS films with a specific surface wettability, which can potentially expand the application of porous PDMS films.
Collapse
Affiliation(s)
- Zhoukun He
- School of Mechanical Engineering, Chengdu University, Chengdu, China
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, China
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- School of Mechanical Engineering, Chengdu University, Chengdu, China
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Zhuo Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, China
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Jie Su
- School of Mechanical Engineering, Chengdu University, Chengdu, China
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Yikun Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, China
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| | - Jiayan Mao
- Department of Nephrology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
2
|
He Z, Yang X, Mu L, Wang N, Lan X. A versatile "3M" methodology to obtain superhydrophobic PDMS-based materials for antifouling applications. Front Bioeng Biotechnol 2022; 10:998852. [PMID: 36105602 PMCID: PMC9464926 DOI: 10.3389/fbioe.2022.998852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Fouling, including inorganic, organic, bio-, and composite fouling seriously affects our daily life. To reduce these effects, antifouling strategies including fouling resistance, release, and degrading, have been proposed. Superhydrophobicity, the most widely used characteristic for antifouling that relies on surface wettability, can provide surfaces with antifouling abilities owing to its fouling resistance and/or release effects. PDMS shows valuable and wide applications in many fields, and due to the inherent hydrophobicity, superhydrophobicity can be achieved simply by roughening the surface of pure PDMS or its composites. In this review, we propose a versatile "3M" methodology (materials, methods, and morphologies) to guide the fabrication of superhydrophobic PDMS-based materials for antifouling applications. Regarding materials, pure PDMS, PDMS with nanoparticles, and PDMS with other materials were introduced. The available methods are discussed based on the different materials. Materials based on PDMS with nanoparticles (zero-, one-, two-, and three-dimensional nanoparticles) are discussed systematically as typical examples with different morphologies. Carefully selected materials, methods, and morphologies were reviewed in this paper, which is expected to be a helpful reference for future research on superhydrophobic PDMS-based materials for antifouling applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
He Z, Yang X, Wang N, Mu L, Pan J, Lan X, Li H, Deng F. Anti-Biofouling Polymers with Special Surface Wettability for Biomedical Applications. Front Bioeng Biotechnol 2021; 9:807357. [PMID: 34950651 PMCID: PMC8688920 DOI: 10.3389/fbioe.2021.807357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
The use of anti-biofouling polymers has widespread potential for counteracting marine, medical, and industrial biofouling. The anti-biofouling action is usually related to the degree of surface wettability. This review is focusing on anti-biofouling polymers with special surface wettability, and it will provide a new perspective to promote the development of anti-biofouling polymers for biomedical applications. Firstly, current anti-biofouling strategies are discussed followed by a comprehensive review of anti-biofouling polymers with specific types of surface wettability, including superhydrophilicity, hydrophilicity, and hydrophobicity. We then summarize the applications of anti-biofouling polymers with specific surface wettability in typical biomedical fields both in vivo and in vitro, such as cardiology, ophthalmology, and nephrology. Finally, the challenges and directions of the development of anti-biofouling polymers with special surface wettability are discussed. It is helpful for future researchers to choose suitable anti-biofouling polymers with special surface wettability for specific biomedical applications.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
| | - Xiaochen Yang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Jinyuan Pan
- Institute for Advanced Study, Research Center of Composites and Surface and Interface Engineering, Chengdu University, Chengdu, China
- School of Mechanical Engineering, Chengdu University, Chengdu, China
| | - Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hongmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Fei Deng
- Department of Nephrology, Jinniu Hospital of Sichuan Provincial People’s Hospital and Chengdu Jinniu District People’s Hospital, Chengdu, China
- Department of Nephrology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Lan X, Lei Y, He Z, Yin A, Li L, Tang Z, Li M, Wang Y. A transparent hydrophilic anti-biofouling coating for intraocular lens materials prepared by "bridging" of the intermediate adhesive layer. J Mater Chem B 2021; 9:3696-3704. [PMID: 33870984 DOI: 10.1039/d1tb00065a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The attachment of bio-foulants, including unwanted cells, proteins, and bacteria, to a medical device such as an intraocular lens can lead to implantation failure. Hydrophilic polymers are often used as surface modifiers in the fabrication of anti-biofouling coatings, but a hydrophilic coating can easily become swollen and peel off the substrate. In this study, we chose polymethyl methacrylate (PMMA) as the representative material of intraocular lenses because PMMA has better biocompatibility, a higher refractive index, better optical clarity, lighter weight, more stable performance, and lower cost than other intraocular lens materials. We fabricated polyvinyl alcohol (PVA) coatings with or without a "bridge", that is, an intermediate adhesive layer (AL), to increase the adhesion bonding effect between the anti-biofouling coating and the substrate. The results indicated that the prepared coatings were transparent and noncytotoxic. Moreover, the anti-adhesion properties of the cells and the resistance properties to nonspecific protein adsorption of PMMA modified by both AL and PVA coatings were better and more durable compared with the sample only modified with a physically dipped PVA coating. The coating prepared by AL "bridging" provides a new strategy for the preparation of a transparent hydrophilic anti-biofouling coating suitable for PMMA intraocular lens materials.
Collapse
Affiliation(s)
- Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China.
| | - Anlin Yin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. and College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Linhua Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhonglan Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Meiling Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Variability in the Wettability and Water Storage Capacity of Common Oak Leaves (Quercus robur L.). WATER 2018. [DOI: 10.3390/w10060695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|