1
|
Cheng Y, Wang J, Luo J, An X, Wang P, Ma X, Du X, Hao X. BiOI with Inherent Photo/Electric Biactivity Recovery I – by Novel Photoassisted Electrochemically Switched Ion Exchange Technology. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yijia Cheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jie Wang
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Jinhua Luo
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaowei An
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Peifen Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xuli Ma
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiao Du
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaogang Hao
- Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|
2
|
Yang J, Tai W, Wu F, Shi K, Jia T, Su Y, Liu T, Mocilac P, Hou X, Chen X. Enhanced removal of radioactive iodine anions from wastewater using modified bentonite: Experimental and theoretical study. CHEMOSPHERE 2022; 292:133401. [PMID: 34953880 DOI: 10.1016/j.chemosphere.2021.133401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Efficient and cost-effective removal of radioactive iodine anions from contaminated water has become a crucial task and a great challenge for waste treatment and environmental remediation. Herein, we present hexadecylpyridinium chloride monohydrate modified bentonite (HDPy-bent) for the efficient and selective removal of iodine anions (I- and IO3-) from contaminated water. Batch experiments showed that HDPy-bent could remove more than 95% of I- and IO3- within 10 min, and had maximum I- and IO3- adsorption capacities of 80.0 and 50.2 mg/g, respectively. Competitive experiments indicated that HDPy-bent exhibited excellent I- and IO3- selectivity in the excessive presence of common concomitant anions including PO43-, SO42-, HCO3-, NO3-, Cl- (maximum mole ratio of anions vs iodine anions was ∼50,000). An anion exchange mechanism was proposed for the selective adsorption of iodine anions. Optimal adsorption structure of HDPy+/I- (IO3-) at atomic level and driving forces of the I- (IO3-) adsorption were calculated by density functional theory (DFT) simulations. Moreover, the good durability and reusability of the HDPy-bent has been demonstrated with 5 adsorption-desorption cycles. Dynamic column experiment also demonstrated that HDPy-bent exhibited excellent removal and fractional recovery capabilities towards I- and IO3- from simulated groundwater and environmental water samples. In conclusion, this work presents a promising adsorbent material for the decontamination of radioactive iodine anions from wastewater on a large scale.
Collapse
Affiliation(s)
- Junqiang Yang
- Frontier Science Center for Rare Isotopes, Lanzhou University, 730000, Lanzhou, PR China; School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, PR China
| | - Wenya Tai
- School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, PR China
| | - Fei Wu
- Frontier Science Center for Rare Isotopes, Lanzhou University, 730000, Lanzhou, PR China
| | - Keliang Shi
- Frontier Science Center for Rare Isotopes, Lanzhou University, 730000, Lanzhou, PR China; School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, PR China; Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000, Lanzhou, PR China.
| | - Tianyi Jia
- School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, PR China
| | - Yin Su
- School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, PR China
| | - Tonghuan Liu
- Frontier Science Center for Rare Isotopes, Lanzhou University, 730000, Lanzhou, PR China; School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, PR China; Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000, Lanzhou, PR China
| | - Pavle Mocilac
- Frontier Science Center for Rare Isotopes, Lanzhou University, 730000, Lanzhou, PR China; School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, PR China
| | - Xiaolin Hou
- Frontier Science Center for Rare Isotopes, Lanzhou University, 730000, Lanzhou, PR China; School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, PR China
| | - Ximeng Chen
- Frontier Science Center for Rare Isotopes, Lanzhou University, 730000, Lanzhou, PR China; School of Nuclear Science and Technology, Lanzhou University, 730000, Lanzhou, PR China; Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000, Lanzhou, PR China
| |
Collapse
|
3
|
Chi KN, Guan Y, Zhang X, Yang T, Meng S, Hu R, Yang YH. Iodide/metal-organic frameworks (MOF) -mediated signal amplification strategy for the colorimetric detection of H 2O 2, Cr 2O 72- and H 2S. Anal Chim Acta 2021; 1159:338378. [PMID: 33867031 DOI: 10.1016/j.aca.2021.338378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022]
Abstract
The analytical methods based on colorimetric detection of various analytes have attracted intensive interest. However, most of them display relatively low sensitivity. Herein, a novel colorimetric strategy based on iodide/metal-organic frameworks (MOF)-mediated amplification was developed for low-cost, naked-eye detection and quantification of H2O2,Cr2O72-, and H2S. Cu-MOFs could catalyze the oxidation of the colorless peroxidase substrate TMB to produce a blue product. The published researches mainly focused on the immobilization or integration of a macromolecule, such as natural enzymes, to enhance MOFs catalytic abilities. The use of small molecules to improve the catalytic performance of MOFs has rarely reported. Due to the negligible steric hindrance, iodide could easily be adsorbed in the framework pore of MOFs to conduct the synergic catalytic effect, and shows a high catalytic effect. As a result, the catalytic activity of Cu-MOFs was dramatically enhanced, and thus, the nanocatalyst could act as an amplifier system for target detection. The detection limits obtained by the amplified method are 25, 30, and 0.2 nM, respectively, which are about 200-fold lower than that of the unamplified colorimetric assays. The colorimetric strategy developed herein provides a novel system for the detection of low concentrations of analytes in complex biological samples.
Collapse
Affiliation(s)
- Kuan-Neng Chi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Xi Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China.
| | - Yun-Hui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Yunnan, Kunming, 650092, PR China.
| |
Collapse
|
4
|
Seon J, Hwang Y. Cu/Cu 2O-immobilized cellulosic filter for enhanced iodide removal from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124415. [PMID: 33183840 DOI: 10.1016/j.jhazmat.2020.124415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
We developed a Cu/Cu2O-immobilized filter-type adsorbent for efficient iodide anion removal. A cellulose filter (CF) was used as a support, and its surface was modified using acrylic acid to enhance copper immobilization. The modified filter (CF-AA) exhibited 10x higher copper adsorption than the unmodified filter. Cu/Cu2O was prepared on CF-AA by using a simple hydrothermal method to obtain CF-AA-Cu, and the prepared Cu/Cu2O was characterized with scanning electron microscopy/energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, and thermogravimetric analysis. While CF and Cu2O themselves exhibited limited iodide adsorption performance, CF-AA-Cu exhibited fast adsorption kinetics with a half-life of 60 min as well as a high adsorption capacity of 10.32 mg/g, as obtained using the Langmuir adsorption isotherm model. Moreover, it exhibited high selectivity for iodide when high concentrations of other anions were present. The adsorption mechanism was proved by means of material characterization before and after adsorption. The coexistence of Cu0, Cu+, and Cu2+ in CF-AA-Cu make it effective in broader pH conditions via the redox reaction between Cu0 and Cu2+. Overall, iodide adsorbents in the form of filters with high adsorption capacity, selectivity, and ability over a wide pH range are potentially useful for removing iodide from water.
Collapse
Affiliation(s)
- Jaeyoung Seon
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
5
|
Yadollahi M, Hamadi H, Nobakht V. Capture of iodine in solution and vapor phases by newly synthesized and characterized encapsulated Cu 2O nanoparticles into the TMU-17-NH 2 MOF. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122872. [PMID: 32521316 DOI: 10.1016/j.jhazmat.2020.122872] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The efficient capture and storage of radioactive iodine (129I or 131I) formed during the extensive use of nuclear energy is of paramount importance. Therefore, it is a great deal to design new adsorbents for effectively disposing of iodine from nuclear waste. In this work, a new Cu2O/TMU-17-NH2 composite has been prepared by a simple encapsulation of Cu2O nanoparticles (NPs) into the metal organic framework (MOF) TMU-17-NH2 for the first time. The as-synthesized Cu2O/TMU-17-NH2 was fully characterized in details and the iodine sorption/release capability of the Cu2O/TMU-17-NH2 composite has been investigated both in solution and in the vapor phase. According to the FE-SEM images, the Cu2O/TMU-17-NH2 was obtained with same morphology to that of the pristine TMU-17-NH2. The I2 sorption/release experiments were examined by UV-vis spectroscopy. The optimal iodine sorption was obtained by almost complete removal of iodine with a sorption capacity of about 567 mg/g. Detailed experimental evidence demonstrating that the iodine was captured by chemisorption process. Furthermore, photoluminescence (PL) properties of Cu2O/TMU-17-NH2 have also been investigated in which indicate that the Cu2O/TMU-17-NH2 composite exhibits stronger emission than the pristine TMU-17-NH2.
Collapse
Affiliation(s)
- Mahtab Yadollahi
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hosein Hamadi
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Valiollah Nobakht
- Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Wrighton-Araneda K, Valdebenito C, Camarada MB, Abarca G, Cortés-Arriagada D. Interaction of supported ionic liquids phases onto copper nanoparticles: A DFT study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Mao P, Yu X, Liu K, Sun A, Shen J, Yang Y, Ni L, Yue F, Wang Z. Rapid and reversible adsorption of radioactive iodide from wastewaters by green and low-cost palygorskite-based microspheres. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07231-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Dinh TD, Zhang D, Tuan VN. High iodine adsorption performances under off-gas conditions by bismuth-modified ZnAl-LDH layered double hydroxide. RSC Adv 2020; 10:14360-14367. [PMID: 35498468 PMCID: PMC9051909 DOI: 10.1039/d0ra00501k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 09/16/2020] [Accepted: 03/20/2020] [Indexed: 01/16/2023] Open
Abstract
The effective adsorption of radioactive iodine is greatly desirable, but is still a significant challenge. In this manuscript, we report the synthesis of a bismuth-modified zinc aluminium layered double hydroxide (BiZnAl-LDH) via a co-precipitation method for the highly efficient absorption of iodine. Based on the robust chemical attraction between Bi and I2, BiZnAl-LDH exhibited highly effective iodine capture. Furthermore, to evaluate BiZnAl-LDH as an effective sorbent, it was characterized via X-ray powder diffraction (XRD), scanning electron microscopy-energy dispersion spectroscopy (SEM-EDS), and Fourier-transform infrared spectroscopy (FITR). In addition, to determine the morphology and iodine adsorption properties of BiZnAl-LDH, several studies were conducted. Through experiments, its elemental composition and vibration before and after iodine adsorption were analyzed via EDS and X-ray photoelectron spectroscopy (XPS). During the capture process, I2 is reduced to I− by the intercalated Bi3+via chemical adsorption, and the maximum adsorption capacity of BiZnAl-LDH for iodine reached up to 433 mg g−1, which had a surface area, average pore diameter, and pore volume of 36.259 m2 g−1, 2.374 nm, and 0.128 m3 g−1, respectively. Compared with several previous sorbents for iodine adsorption, BiZnAl-LDH exhibited an iodine adsorption of approximately two times that of the commercial Ag-exchange zeolite X, and furthermore BiZnAl-LDH is cost-effective. Thus, the substantial iodine capture by BiZnAl-LDH indicates that it is a capable sorbent for the effective elimination of radioactive iodine from reprocessing plant emissions. The effective adsorption of radioactive iodine is greatly desirable, but is still a significant challenge.![]()
Collapse
Affiliation(s)
- Trinh Dinh Dinh
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
- Vilas 849
| | - Dongxiang Zhang
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- China
| | - Vu Ngoc Tuan
- Faculty of Electric-Electronic Engineering
- Nam Dinh University of Technology Education
- Nam Dinh
- Vietnam
| |
Collapse
|
9
|
Photocatalytic Performance of Cu xO/TiO₂ Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation. MATERIALS 2019; 12:ma12030412. [PMID: 30699939 PMCID: PMC6385099 DOI: 10.3390/ma12030412] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/21/2023]
Abstract
In the present study, we propose a new photocatalytic interface prepared by high-power impulse magnetron sputtering (HiPIMS), and investigated for the degradation of Reactive Green 12 (RG12) as target contaminant under visible light light-emitting diodes (LEDs) illumination. The CuxO/TiO₂ nanoparticulate photocatalyst was sequentially sputtered on polyester (PES). The photocatalyst formulation was optimized by investigating the effect of different parameters such as the sputtering time of CuxO, the applied current, and the deposition mode (direct current magnetron sputtering, DCMS or HiPIMS). The results showed that the fastest RG12 degradation was obtained on CuxO/TiO₂ sample prepared at 40 A in HiPIMS mode. The better discoloration efficiency of 53.4% within 360 min was found in 4 mg/L of RG12 initial concentration and 0.05% Cuwt/PESwt as determined by X-ray fluorescence. All the prepared samples contained a TiO₂ under-layer with 0.02% Tiwt/PESwt. By transmission electron microscopy (TEM), both layers were seen uniformly distributed on the PES fibers. The effect of the surface area to volume (dye volume) ratio (SA/V) on the photocatalytic efficiency was also investigated for the discoloration of 4 mg/L RG12. The effect of the presence of different chemicals (scavengers, oxidant or mineral pollution or salts) in the photocatalytic medium was studied. The optimization of the amount of added hydrogen peroxide (H₂O₂) and potassium persulfate (K₂S₂O₈) was also investigated in detail. Both, H₂O₂ and K₂S₂O₈ drastically affected the discoloration efficiency up to 7 and 6 times in reaction rate constants, respectively. Nevertheless, the presence of Cu (metallic nanoparticles) and NaCl salt inhibited the reaction rate of RG12 discoloration by about 4 and 2 times, respectively. Moreover, the systematic study of reactive oxygen species' (ROS) contribution was also explored with the help of iso-propanol, methanol, and potassium dichromate as •OH radicals, holes (h⁺), and superoxide ion-scavengers, respectively. Scavenging results showed that O₂- played a primary role in RG12 removal; however, •OH radicals' and photo-generated holes' (h⁺) contributions were minimal. The CuxO/TiO₂ photocatalyst was found to have a good reusability and stability up to 21 cycles. Ions' release was quantified by means of inductively coupled plasma mass spectrometry (ICP-MS) showing low Cu-ions' release.
Collapse
|