1
|
Luo Y, Chen Y, Koratkar N, Liu W. Densification of Alloying Anodes for High Energy Lithium-Ion Batteries: Critical Perspective on Inter- Versus Intra-Particle Porosity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403530. [PMID: 38975809 PMCID: PMC11425885 DOI: 10.1002/advs.202403530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Indexed: 07/09/2024]
Abstract
High Li-storage-capacity particles such as alloying-based anodes (Si, Sn, Ge, etc.) are core components for next-generation Li-ion batteries (LIBs) but are crippled by their intrinsic volume expansion issues. While pore pre-plantation represents a mainstream solution, seldom do this strategy fully satisfy the requirements in practical LIBs. One prominent issue is that porous particles reduce electrode density and negate volumetric performance (Wh L-1) despite aggressive electrode densification strategies. Moreover, the additional liquid electrolyte dosage resulting from porosity increase is rarely noticed, which has a significant negative impact on cell gravimetric energy density (Wh kg-1). Here, the concept of judicious porosity control is introduced to recalibrate existing particle design principles in order to concurrently boost gravimetric and volumetric performance, while also maintaining the battery's cycle life. The critical is emphasized but often neglected role that intraparticle pores play in dictating battery performance, and also highlight the superiority of closed pores over the open pores that are more commonly referred to in the literature. While the analysis and case studies focus on silicon-carbon composites, the overall conclusions apply to the broad class of alloying anode chemistries.
Collapse
Affiliation(s)
- Yiteng Luo
- Institute of New Energy and Low-Carbon Technology (INELT), College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology (INELT), College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Nikhil Koratkar
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wei Liu
- Institute of New Energy and Low-Carbon Technology (INELT), College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Yin YM, Pei C, Xia W, Luo X, Li DS. Recent Advances and Perspectives on the Promising High-Voltage Cathode Material of Na 3 (VO) 2 (PO 4 ) 2 F. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303666. [PMID: 37407518 DOI: 10.1002/smll.202303666] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Indexed: 07/07/2023]
Abstract
Na3 (VO)2 (PO4 )2 F (NVOPF) has emerged as one of the most promising cathode materials for sodium-ion batteries (SIBs) attributed to its high specific capacity (130 mAh g-1 ), high operation voltage (>3.9 V vs Na+ /Na), and excellent structural stability (<2% volume change). However, the comparatively low intrinsic electronic conductivity (≈10-7 S cm-1 ) of NVOPF leads to unsatisfactory electrochemical performance, especially at high rates, limiting its practical applications. To improve the conductivity and enhance Na storage performance, many efforts have been devoted to designing NVOPF, including morphology optimization, hybridization with conductive materials, metal-ion doping, Na-site regulation, and F/O ratio adjustment. These attempts have shown some encouraging achievements and shed light on the practical application of NVOPF cathodes. This work aims to provide a general introduction, synthetic methods, and rational design of NVOPF to give a deeper understanding of the recent progress. Additionally, the unique microstructure of NVOPF and its relationship with Na storage properties are also described in detail. The current status, as well as the advances and limitations of such SIB cathode material, are reported. Finally, future perspectives and guidance for advancing high-performance NVOPF cathodes toward practical applications are presented.
Collapse
Affiliation(s)
- Ya-Meng Yin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Cunyuan Pei
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Wei Xia
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Xiaojun Luo
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
3
|
Tubtimkuna S, Danilov DL, Sawangphruk M, Notten PHL. Review of the Scalable Core-Shell Synthesis Methods: The Improvements of Li-Ion Battery Electrochemistry and Cycling Stability. SMALL METHODS 2023; 7:e2300345. [PMID: 37231555 DOI: 10.1002/smtd.202300345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Indexed: 05/27/2023]
Abstract
The demand for lithium-ion batteries has significantly increased due to the increasing adoption of electric vehicles (EVs). However, these batteries have a limited lifespan, which needs to be improved for the long-term use needs of EVs expected to be in service for 20 years or more. In addition, the capacity of lithium-ion batteries is often insufficient for long-range travel, posing challenges for EV drivers. One approach that has gained attention is using core-shell structured cathode and anode materials. That approach can provide several benefits, such as extending the battery lifespan and improving capacity performance. This paper reviews various challenges and solutions by the core-shell strategy adopted for both cathodes and anodes. The highlight is scalable synthesis techniques, including solid phase reactions like the mechanofusion process, ball-milling, and spray-drying process, which are essential for pilot plant production. Due to continuous operation with a high production rate, compatibility with inexpensive precursors, energy and cost savings, and an environmentally friendly approach that can be carried out at atmospheric pressure and ambient temperatures. Future developments in this field may focus on optimizing core-shell materials and synthesis techniques for improved Li-ion battery performance and stability.
Collapse
Affiliation(s)
- Suchakree Tubtimkuna
- Fundamental Electrochemistry (IEK-9) Forschungszentrum Jülich, D-52425, Jülich, Germany
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Dmitri L Danilov
- Fundamental Electrochemistry (IEK-9) Forschungszentrum Jülich, D-52425, Jülich, Germany
- Eindhoven University of Technology Eindhoven, Eindhoven, MB, 5600, The Netherlands
| | - Montree Sawangphruk
- Department of Chemical and Biomolecular Engineering School of Energy Science and Engineering Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Peter H L Notten
- Fundamental Electrochemistry (IEK-9) Forschungszentrum Jülich, D-52425, Jülich, Germany
- Eindhoven University of Technology Eindhoven, Eindhoven, MB, 5600, The Netherlands
- University of Technology Sydney Broadway, Sydney, NS, 2007, Australia
| |
Collapse
|
4
|
Su P, Wu J, Yang Y, Gao L, Shen L, Bao N. Enhanced Capacity and Cycle Stability of a Pomegranate-Like Si/rGO Composite Anode by Electrostatic Self-Assembly and Spray-Drying Processes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peng Su
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China
| | - Jian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China
| | - Yi Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China
| | - Ling Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China
| | - Liming Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China
- School of Materials Science and Engineering, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| |
Collapse
|
5
|
She Z, Uceda M, Pope MA. Controlling Void Space in Crumpled Graphene-Encapsulated Silicon Anodes using Sacrificial Polystyrene Nanoparticles. CHEMSUSCHEM 2021; 14:2952-2962. [PMID: 34032004 DOI: 10.1002/cssc.202100687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Silicon anodes have a theoretical capacity of 3590 mAh g-1 (for Li15 Si4 , at room temperature), which is tenfold higher than the graphite anodes used in current Li-ion batteries. This, and silicon's natural abundance, makes it one of the most promising materials for next-generation batteries. Encapsulating silicon nanoparticles (Si NPs) in a crumpled graphene shell by spray drying or spray pyrolysis are promising and scalable methods to produce core-shell structures, which buffer the extreme volume change (>300 vol %) caused by (de)lithiaton of silicon. However, capillary forces cause the graphene-based materials to tightly wrap around Si NP clusters, and there is little control over the void space required to further improve cycle life. Herein, a simple strategy is developed to engineer void-space within the core by incorporating varying amounts of similarly sized polystyrene (PS) nanospheres in the spray drier feed mixture. The PS completely decomposes during thermal reduction of the graphene oxide shell and results in Si cores of varying porosity. The best performance is achieved at a 1 : 1 ratio (PS/Si), leading to high capacities of 1638, 1468, and 1179 mAh g-1 Si+rGO at 0.1, 1, and 4 A g-1 , respectively. Moreover, at 1 A g-1 , the capacity retention is 80.6 % after 200 cycles. At a practical active material loading of 2.4 mg cm-2 , the electrodes achieve an areal capacity of 2.26 mAh cm-2 at 1 A g-1 .
Collapse
Affiliation(s)
- Zimin She
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Marianna Uceda
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Michael A Pope
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
6
|
Abstract
A sustainable shift from internal combustion engine (ICE) vehicles to electric vehicles (EVs) is essential to achieve a considerable reduction in emissions. The production of Li-ion batteries (LIBs) used in EVs is an energy-intensive and costly process. It can also lead to significant embedded emissions depending on the source of energy used. In fact, about 39% of the energy consumption in LIB production is associated with drying processes, where the electrode drying step accounts for about a half. Despite the enormous energy consumption and costs originating from drying processes, they are seldomly researched in the battery industry. Establishing knowledge within the LIB industry regarding state-of-the-art drying techniques and solvent evaporation mechanisms is vital for optimising process conditions, detecting alternative solvent systems, and discovering novel techniques. This review aims to give a summary of the state-of-the-art LIB processing techniques. An in-depth understanding of the influential factors for each manufacturing step of LIBs is then established, emphasising the electrode structure and electrochemical performance. Special attention is dedicated to the convection drying step in conventional water and N-Methyl-2-pyrrolidone (NMP)-based electrode manufacturing. Solvent omission in dry electrode processing substantially lowers the energy demand and allows for a thick, mechanically stable electrode coating. Small changes in the electrode manufacturing route may have an immense impact on the final battery performance. Electrodes used for research and development often have a different production route and techniques compared to those processed in industry. The scalability issues related to the comparison across scales are discussed and further emphasised when the industry moves towards the next-generation techniques. Finally, the critical aspects of the innovations and industrial modifications that aim to overcome the main challenges are presented.
Collapse
|
7
|
Pi Y, Gan Z, Li Z, Ruan Y, Pei C, Yu H, Han K, Ge Y, An Q, Mai L. Methanol-derived high-performance Na 3V 2(PO 4) 3/C: from kilogram-scale synthesis to pouch cell safety detection. NANOSCALE 2020; 12:21165-21171. [PMID: 33057560 DOI: 10.1039/d0nr04884d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Na3V2(PO4)3 (NVP) is regarded as a potential cathode material that can be applied in sodium ion batteries (SIBs) owing to its NASICON structure. However, most of the reported works have focused on the synthesis of materials and the improvement of their electrochemical properties, with little research on the design and safety of pouch cells. Herein, we implemented a cost-saving route to realize the industrial-scale synthesis of NVP cathode materials. The obtained NVP samples possess an impressive Na-ion storage capability with high reversible capacity (116.3 mA h g-1 at 0.2 C), superior power capability (97.9 mA h g-1 at 30 C), and long lifespan (71.6% capacity retention after 2500 cycles at 20 C). It was remarkable that industrial-scale NVP/hard carbon (HC) sodium-ion pouch cells could be designed with an 823 mA h discharge capacity at a current of 200 mA (about 0.25 C), and which possess a long life and high rate performance (1000 cycles with a little decay at a current of 4000 mA). Besides, the pouch cells also exhibit excellent thermal stability when demonstrated for application in unmanned aerial vehicles (UAVs), and puncturing experiment results can further prove the excellent safety performance of NVP-hard carbon pouch cells.
Collapse
Affiliation(s)
- Yuqiang Pi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ilic IK, Perovic M, Liedel C. Interplay of Porosity, Wettability, and Redox Activity as Determining Factors for Lithium-Organic Electrochemical Energy Storage Using Biomolecules. CHEMSUSCHEM 2020; 13:1856-1863. [PMID: 32026541 PMCID: PMC7186837 DOI: 10.1002/cssc.201903156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Indexed: 05/29/2023]
Abstract
Although several recent publications describe cathodes for electrochemical energy storage materials made from regrown biomass in aqueous electrolytes, their transfer to lithium-organic batteries is challenging. To gain a deeper understanding, we investigate the influences on charge storage in model systems based on biomass-derived, redox-active compounds and comparable structures. Hybrid materials from these model polymers and porous carbon are compared to determine precisely the causes of exceptional capacity in lithium-organic systems. Besides redox activity, particularly, wettability influences capacity of the composites greatly. Furthermore, in addition to biomass-derived molecules with catechol functionalities, which are described commonly as redox-active species in lithium-bio-organic systems, we further describe guaiacol groups as a promising alternative for the first time and compare the performance of the respective compounds.
Collapse
Affiliation(s)
- Ivan K. Ilic
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Milena Perovic
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Clemens Liedel
- Department of Colloid ChemistryMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
9
|
Park JS, Kim JK, Hong JH, Cho JS, Park SK, Kang YC. Advances in the synthesis and design of nanostructured materials by aerosol spray processes for efficient energy storage. NANOSCALE 2019; 11:19012-19057. [PMID: 31410433 DOI: 10.1039/c9nr05575d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The increasing demand for energy storage has motivated the search for highly efficient electrode materials for use in rechargeable batteries with enhanced energy density and longer cycle life. One of the most promising strategies for achieving improved battery performance is altering the architecture of nanostructured materials employed as electrode materials in the energy storage field. Among numerous synthetic methods suggested for the fabrication of nanostructured materials, aerosol spray techniques such as spray pyrolysis, spray drying, and flame spray pyrolysis are reliable, as they are facile, cost-effective, and continuous processes that enable the synthesis of nanostructured electrode materials with desired morphologies and compositions with controlled stoichiometry. The post-treatment of spray-processed powders enables the fabrication of oxide, sulfide, and selenide nanostructures hybridized with carbonaceous materials including amorphous carbon, reduced graphene oxide, carbon nanotubes, etc. In this article, recent progress in the synthesis of nanostructured electrode materials by spray processes and their general formation mechanisms are discussed in detail. A brief introduction to the working principles of each spray process is given first, and synthetic strategies for the design of electrode materials for lithium-ion, sodium-ion, lithium-sulfur, lithium-selenium, and lithium-oxygen batteries are discussed along with some examples. This analysis sheds light on the synthesis of nanostructured materials by spray processes and paves the way toward the design of other novel and advanced nanostructured materials for high performance electrodes in rechargeable batteries of the future.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Jin Koo Kim
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Jeong Hoo Hong
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| | - Jung Sang Cho
- Department of Engineering Chemistry, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Seung-Keun Park
- Department of Chemical Engineering, Kongju National University, Budae-dong 275, Cheonan, Chungnam 314-701, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea.
| |
Collapse
|
10
|
Kim JK, Jeong SY, Lim SH, Oh JH, Park S, Cho JS, Kang YC. Recent Advances in Aerosol‐Assisted Spray Processes for the Design and Fabrication of Nanostructured Metal Chalcogenides for Sodium‐Ion Batteries. Chem Asian J 2019; 14:3127-3140. [DOI: 10.1002/asia.201900751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Koo Kim
- Department of Materials Science and EngineeringKorea University Anam-dong Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Sun Young Jeong
- Department of Engineering ChemistryChungbuk National University Chungdae-ro 1, Seowon-gu Cheongju Chungbuk 361-763 Republic of Korea
| | - Sae Hoon Lim
- Department of Materials Science and EngineeringKorea University Anam-dong Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Jang Hyeok Oh
- Department of Engineering ChemistryChungbuk National University Chungdae-ro 1, Seowon-gu Cheongju Chungbuk 361-763 Republic of Korea
| | - Seung‐Keun Park
- Department of Chemical EngineeringKongju National University Budae-dong 275 Cheonan, Chungnam 314-701 Republic of Korea
| | - Jung Sang Cho
- Department of Engineering ChemistryChungbuk National University Chungdae-ro 1, Seowon-gu Cheongju Chungbuk 361-763 Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and EngineeringKorea University Anam-dong Seongbuk-gu Seoul 136-713 Republic of Korea
| |
Collapse
|