1
|
Pisárčik M, Lukáč M, Jampílek J, Bilka F, Bilková A, Pašková Ľ, Devínsky F, Horáková R, Březina M, Opravil T. Silver Nanoparticles Stabilized with Phosphorus-Containing Heterocyclic Surfactants: Synthesis, Physico-Chemical Properties, and Biological Activity Determination. NANOMATERIALS 2021; 11:nano11081883. [PMID: 34443714 PMCID: PMC8399434 DOI: 10.3390/nano11081883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Phosphorus-containing heterocyclic cationic surfactants alkyldimethylphenylphospholium bromides with the alkyl chain length 14 to 18 carbon atoms were used for the stabilization of silver nanodispersions. Zeta potential of silver nanodispersions ranges from +35 to +70 mV, which indicates the formation of stable silver nanoparticles (AgNPs). Long-chain heptadecyl and octadecyl homologs of the surfactants series provided the most intensive stabilizing effect to AgNPs, resulting in high positive zeta potential values and smaller diameter of AgNPs in the range 50–60 nm. A comparison with non-heterocyclic alkyltrimethylphosphonium surfactants of the same alkyl chain length showed better stability and more positive zeta potential values for silver nanodispersions stabilized with heterocyclic phospholium surfactants. Investigations of biological activity of phospholium-capped AgNPs are represented by the studies of antimicrobial activity and cytotoxicity. While cytotoxicity results revealed an increased level of HepG2 cell growth inhibition as compared with the cytotoxicity level of silver-free surfactant solutions, no enhanced antimicrobial action of phospholium-capped AgNPs against microbial pathogens was observed. The comparison of cytotoxicity of AgNPs stabilized with various non-heterocyclic ammonium and phosphonium surfactants shows that AgNPs capped with heterocyclic alkyldimethylphenylphospholium and non-heterocyclic triphenyl-substituted phosphonium surfactants have the highest cytotoxicity among silver nanodispersions stabilized by the series of ammonium and phosphonium surfactants.
Collapse
Affiliation(s)
- Martin Pisárčik
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-2-50117329
| | - Miloš Lukáč
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
| | - Josef Jampílek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia;
| | - František Bilka
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia; (F.B.); (A.B.); (Ľ.P.)
| | - Andrea Bilková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia; (F.B.); (A.B.); (Ľ.P.)
| | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia; (F.B.); (A.B.); (Ľ.P.)
| | - Ferdinand Devínsky
- Faculty of Pharmacy, Comenius University, SK-83232 Bratislava, Slovakia;
| | | | - Matěj Březina
- Materials Research Centre, Faculty of Chemistry, University of Technology, CZ-61200 Brno, Czech Republic; (M.B.); (T.O.)
| | - Tomáš Opravil
- Materials Research Centre, Faculty of Chemistry, University of Technology, CZ-61200 Brno, Czech Republic; (M.B.); (T.O.)
| |
Collapse
|
2
|
A. R A, S SB, Shivaramu PD. Spectral characterization of morphological structure of organomodified montmorillonite clay-based epoxy nanocomposite. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.1908031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Annappa A. R
- Department of Mechanical Engineering, University BDT College of Engineering, Davangere, India
| | - S. Basavarajappa S
- Department of Mechanical Engineering, University BDT College of Engineering, Davangere, India
| | - Prasanna D. Shivaramu
- Department of Applied Sciences, Visvesvaraya Technological University, Center for Postgraduate Studies, Muddenahalli, India
| |
Collapse
|
3
|
Pisárčik M, Lukáč M, Jampílek J, Bilka F, Bilková A, Pašková Ľ, Devínsky F, Horáková R, Opravil T. Phosphonium surfactant stabilised silver nanoparticles. Correlation of surfactant structure with physical properties and biological activity of silver nanoparticles. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Aoyama S, Ismail I, Park YT, Macosko CW, Ougizawa T. PET/Graphene Compatibilization for Different Aspect Ratio Graphenes via Trimellitic Anhydride Functionalization. ACS OMEGA 2020; 5:3228-3239. [PMID: 32118138 PMCID: PMC7045320 DOI: 10.1021/acsomega.9b03288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Two trimellitic anhydride-functionalized, thermally reduced graphenes with different aspect ratios, A f, and the same C/O ratio (8:1) were prepared and melt-mixed into poly(ethylene terephthalate) (PET), and the mechanical properties of the resulting nanocomposites were studied with a focus on plastic deformation behavior. A slight increase in the G' of the melt was observed for the surface-modified low-A f graphene composites (A f = 20) below the percolation threshold, whereas a significant enhancement in G' was observed for higher-A f graphene composites (A f = 80) at all graphene loadings, both below and above the percolation concentration. Furthermore, the use of modified low-A f graphene caused an improvement both in Young's modulus and elongation at break of the resulting PET nanocomposites because of enhancement of interfacial adhesion between filler and matrix which resulted in the formation of a coupled network via covalent bonding and the suppression both of strain-induced orientation and strain-induced crystallization. By contrast, the use of modified higher-A f surface graphene in nanocomposites caused a drastic improvement in Young's modulus but lower elongation-at-break than with the unmodified counterpart; the former effect is due to the formation of denser coupled networks and stronger interfacial adhesion as a result of graphene surface modification and the latter is due to the added geometrical restriction in unentangling chains from the PET matrix in the presence of higher-A f graphene. The preceding observations demonstrate the potential impacts of tuning both surface chemistry and aspect ratio of graphene in the fabrication of PET/graphene composites.
Collapse
Affiliation(s)
- Shigeru Aoyama
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Issam Ismail
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yong Tae Park
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher W. Macosko
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Toshiaki Ougizawa
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1-S8-33, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|