1
|
Vikram V, Hariram N. Finding of antibiotic compounds pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro and Cyclo(prolyl-tyrosyl) isolated from the degradation of epoxy. ENVIRONMENTAL TECHNOLOGY 2024:1-16. [PMID: 39661939 DOI: 10.1080/09593330.2024.2419560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/07/2024] [Indexed: 12/13/2024]
Abstract
The investigation focused on the endophytic gram-positive microbial isolate KARE_P3, capable of degrading epoxy resin materials. This isolate produced bioactive secondary metabolic molecules with potent inhibitory effects against Staphylococcus aureus, Microbial Type Culture Collection and GenBank (MTCC 96). The study examined microbial growth and degradation mechanisms at various time points, with samples collected on the 35th and 70th days of fermentation. Three different solvents were used for extraction, and the crude metabolite was analysed using Thin Layer Chromatography (TLC), Gas Chromatography - Mass Spectrophotometry (GC-MS), Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). These analyses revealed numerous secondary metabolites that help microbes adapt to changing environments. Further characterisation using bioautography and GC-MS identified 71 compounds, with 3-5 showing positive results. Important findings include compounds such as pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro 98% and Cyclo(prolyl-tyrosyl), which have diverse pharmaceutical applications. Antibacterial efficiency was studied using an in silico model, showing higher binding energy and inhibition rates of pyrrolo[1,2-a]pyrazine-1,4-dione and Cyclo(prolyl-tyrosyl) against Candida albicans compared to Staphylococcus epidermis. Challenges remain in the efficient sorting, recycling, and recovery of epoxy materials, crucial for future biotechnological progress.
Collapse
Affiliation(s)
- V Vikram
- Department of Biotechnology, School of Bio and Chemical Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - N Hariram
- Department of Biotechnology, School of Bio and Chemical Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India
| |
Collapse
|
2
|
Leite-Barbosa O, Pinto CCDO, Leite-da-Silva JM, de Aguiar EMMM, Veiga-Junior VF. Polymer Composites Reinforced with Residues from Amazonian Agro-Extractivism and Timber Industries: A Sustainable Approach to Enhancing Material Properties and Promoting Bioeconomy. Polymers (Basel) 2024; 16:3282. [PMID: 39684027 DOI: 10.3390/polym16233282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The Amazon Region (AR), with its vast biodiversity and rich natural resources, presents a unique opportunity for the development of sustainable polymer composites (PCs) reinforced with residues from both timber and agro-extractivism industries. This study explores the potential of Amazonian residues, such as sawdust, wood shavings, and agro-industrial by-products such as açaí seeds and Brazil nut shells, to enhance the mechanical, thermal, and environmental properties of polymer composites. By integrating these natural materials into polymer matrices, significant improvements in the composite performance were achieved, including increased tensile strength, thermal stability, and biodegradability. The study also highlights the environmental and economic benefits of using these residues, promoting waste reduction and supporting a circular economy in the region. Through case studies and detailed analyses, this study demonstrates the feasibility and advantages of incorporating Amazonian residues into composites for a wide range of applications, from construction materials to consumer goods. This approach not only adds value to the by-products of Amazonian industries, but also contributes to the global effort toward sustainable material development.
Collapse
Affiliation(s)
- Odilon Leite-Barbosa
- Military Institute of Engineering-IME, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil
| | | | - Jôse Maria Leite-da-Silva
- Military Institute of Engineering-IME, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil
| | | | | |
Collapse
|
3
|
Klose L, Meyer-Heydecke N, Wongwattanarat S, Chow J, Pérez García P, Carré C, Streit W, Antranikian G, Romero AM, Liese A. Towards Sustainable Recycling of Epoxy-Based Polymers: Approaches and Challenges of Epoxy Biodegradation. Polymers (Basel) 2023; 15:2653. [PMID: 37376299 PMCID: PMC10305103 DOI: 10.3390/polym15122653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Epoxy resins are highly valued for their remarkable mechanical and chemical properties and are extensively used in various applications such as coatings, adhesives, and fiber-reinforced composites in lightweight construction. Composites are especially important for the development and implementation of sustainable technologies such as wind power, energy-efficient aircrafts, and electric cars. Despite their advantages, their non-biodegradability raises challenges for the recycling of polymer and composites in particular. Conventional methods employed for epoxy recycling are characterized by their high energy consumption and the utilization of toxic chemicals, rendering them rather unsustainable. Recent progress has been made in the field of plastic biodegradation, which is considered more sustainable than energy-intensive mechanical or thermal recycling methods. However, the current successful approaches in plastic biodegradation are predominantly focused on polyester-based polymers, leaving more recalcitrant plastics underrepresented in this area of research. Epoxy polymers, characterized by their strong cross-linking and predominantly ether-based backbone, exhibit a highly rigid and durable structure, placing them within this category. Therefore, the objective of this review paper is to examine the various approaches that have been employed for the biodegradation of epoxy so far. Additionally, the paper sheds light on the analytical techniques utilized in the development of these recycling methods. Moreover, the review addresses the challenges and opportunities entailed in epoxy recycling through bio-based approaches.
Collapse
Affiliation(s)
- Leon Klose
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Neele Meyer-Heydecke
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Sasipa Wongwattanarat
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany
| | - Pablo Pérez García
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany
| | - Camille Carré
- Airbus Defence and Space GmbH, Central Research and Technology, 81663 Munich, Germany
| | - Wolfgang Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Ana Malvis Romero
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073 Hamburg, Germany
| |
Collapse
|
4
|
Biodegradation of Petroleum Hydrocarbons by Drechsleraspicifera Isolated from Contaminated Soil in Riyadh, Saudi Arabia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196450. [PMID: 36234987 PMCID: PMC9572601 DOI: 10.3390/molecules27196450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 11/14/2022]
Abstract
Currently, the bioremediation of petroleum hydrocarbons employs microbial biosurfactants because of their public acceptability, biological safety, and low cost. These organisms can degrade or detoxify organic-contaminated areas, such as marine ecosystems. The current study aimed to test the oil-biodegradation ability of the fungus Drechslera spicifera, which was isolated from contaminated soil samples in Riyadh, Saudi Arabia. We used hydrocarbon tolerance, scanning electron microscopy, DCPIP, drop-collapse, emulsification activity, recovery of biosurfactants, and germination assays to assess the biodegradation characteristics of the D. spicifera against kerosene, crude, diesel, used, and mixed oils. The results of DCPIP show that the highest oxidation (0.736 a.u.) was induced by crude oil on the 15th day. In contrast, kerosene and used oil had the highest measurements in emulsification activity and drop-collapse assays, respectively. Meanwhile, crude and used oils produced the highest amounts of biosurfactants through acid precipitation and solvent extraction assays. Furthermore, the biosurfactants stimulated the germination of tomato seeds by more than 50% compared to the control. These findings highlight the biodegradation ability of D. spicifera, which has been proven in the use of petroleum oils as the sole source of carbon. That might encourage further research to demonstrate its application in the cleaning of large, contaminated areas.
Collapse
|
5
|
Delangiz N, Aliyar S, Pashapoor N, Nobaharan K, Asgari Lajayer B, Rodríguez-Couto S. Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges? CHEMOSPHERE 2022; 294:133709. [PMID: 35074325 DOI: 10.1016/j.chemosphere.2022.133709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Increasing world population and industrial activities have enhanced anthropogenic pollution, plastic pollution being especially alarming. So, plastics should be recycled and/or make them biodegradable. Chemical and physical remediating methods are usually energy consuming and costly. In addition, they are not ecofriendly and usually produce toxic byproducts. Bioremediation is a proper option as it is cost-efficient and environmentally friendly. Plastic production and consumption are increasing daily, and, as a consequence, more microorganisms are exposed to these nonbiodegradable polymers. Therefore, investigating new efficient microorganisms and increasing the knowledge about their biology can pave the way for efficient and feasible plastic bioremediation processes. In this sense, omics, systems biology and bioinformatics are three important fields to analyze the biodegradation pathways in microorganisms. Based on the above-mentioned technologies, researchers can engineer microorganisms with specific desired properties to make bioremediation more efficient.
Collapse
Affiliation(s)
- Nasser Delangiz
- Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sajad Aliyar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Neda Pashapoor
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
6
|
Goh CBS, Goh CHP, Wong LW, Cheng WT, Yule CM, Ong KS, Lee SM, Pasbakhsh P, Tan JBL. A three-dimensional (3D) printing approach to fabricate an isolation chip for high throughput in situ cultivation of environmental microbes. LAB ON A CHIP 2022; 22:387-402. [PMID: 34935836 DOI: 10.1039/d1lc00723h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The full plethora of environmental bacteria is often poorly represented in vitro as the majority remain difficult, if not impossible, to culture under standard laboratory settings. These bacteria often require native conditions for the formation of cell masses that collectively have higher chances of survival. With that, a 3D-printed version of the isolation chip (iChip) was used to cultivate bacteria from a tropical peat swamp in situ prior to growth and maintenance in vitro. Briefly, plates made from either acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), or epoxy resin were tested in terms of their usability and durability under acidic conditions similar to those of peat matter. The epoxy resin plates were then found to be most optimal for the sampling conditions. Peat soil samples were collected from the base of a Koompassia malaccensis tree and reconstituted in molten 10% (wt/vol) tryptone soy agar (TSA) prior to inoculation. The iChips were subsequently assembled and buried in the site of origin. As a comparison, bacteria from the same soil sample were cultivated directly on TSA and incubated at 28 °C for two weeks. Thereafter, agar plugs from the iChip were transferred to TSA plates to allow microcolonies within each plug to grow. Each pure isolate from both cultivation approaches that grew was then pooled and extracted for total DNA prior to 16S rRNA gene amplification and sequencing via Illumina MiSeq. Taxonomic abundance comparison revealed that the bacterial taxa at the level of order were significantly different between the two approaches, particularly in the orders, Burkholderiales, Xanthomonodales, Enterobacteriales, and Actinomycetales (differences of 12.0, 7.1, 8.0, and 4.2%, respectively). This indicated that the 3D-printed iChips present a possible low-cost tool for the isolation of bacterial genera that may not be able to grow on media directly in vitro.
Collapse
Affiliation(s)
- Calvin Bok Sun Goh
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, 47500 Malaysia
| | - Clariss Hui Peng Goh
- School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500 Malaysia
| | - Li Wen Wong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
| | - Wai Teng Cheng
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
| | - Catherine Mary Yule
- School of Science and Engineering, University of the Sunshine Coast, Queensland, 4556, Australia
| | - Kuan Shion Ong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
| | - Sui Mae Lee
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, 47500 Malaysia
| | - Pooria Pasbakhsh
- School of Engineering, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Bandar Sunway, 47500 Malaysia.
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, 47500 Malaysia
| |
Collapse
|
7
|
Microbial Depolymerization of Epoxy Resins: A Novel Approach to a Complex Challenge. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this project is evaluating the potential of microbes (fungi and bacteria) for the depolymerization of epoxy, aiming at the development of a circular management of natural resources for epoxy in a long-term prospective. For depolymerization, epoxy samples were incubated for 1, 3, 6 and 9 months in soil microcosms inoculated with Ganoderma adspersum. Contact angle data revealed a reduction in the hydrophobicity induced by the fungus. Environmental scanning electron microscopy on epoxy samples incubated for more than 3 years in microbiological water revealed abundant microbiota. This comprised microbes of different sizes and shapes. The fungi Trichoderma harzianum and Aspergillus calidoustus, as well as the bacteria Variovorax sp. and Methyloversatilis discipulorum, were isolated from this environment. Altogether, these results suggest that microbes are able to colonize epoxy surfaces and, most probably, also partially depolymerize them. This could open promising opportunities for the study of new metabolisms potentially able depolymerize epoxy materials.
Collapse
|
8
|
Borah N, Karak N. Tannic acid based bio‐based epoxy thermosets: Evaluation of thermal, mechanical, and biodegradable behaviors. J Appl Polym Sci 2021. [DOI: 10.1002/app.51792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Nobomi Borah
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences Tezpur University Tezpur Assam India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences Tezpur University Tezpur Assam India
| |
Collapse
|
9
|
Rodrigues VDC, Hirayama D, Ancelotti Junior AC. The effects of residual organic solvent on epoxy: modeling of kinetic parameters by DSC and Borchardt-Daniels method. POLIMEROS 2021. [DOI: 10.1590/0104-1428.09820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Malburet S, Di Mauro C, Noè C, Mija A, Sangermano M, Graillot A. Sustainable access to fully biobased epoxidized vegetable oil thermoset materials prepared by thermal or UV-cationic processes. RSC Adv 2020; 10:41954-41966. [PMID: 35516529 PMCID: PMC9057863 DOI: 10.1039/d0ra07682a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 01/18/2023] Open
Abstract
Beyond the need to find a non-toxic alternative to DiGlycidyl Ether of Bisphenol-A (DGEBA), the serious subject of non-epichlorohydrin epoxy resins production remains a crucial challenge that must be solved for the next epoxy resin generations. In this context, this study focuses on the valorization of vegetable oils (VOs) into thermoset materials by using (i) epoxidation of the VOs through the “double bonds to epoxy” synthetic route and (ii) synthesis of crosslinked homopolymers by UV or hardener-free thermal curing processes. A thorough identification, selection and physico-chemical characterization of non-edible or non-valuated natural vegetable oils were performed. Selected VOs, characterized by a large range of double bond contents, were then chemically modified into epoxides thanks to an optimized, robust and sustainable method based on the use of acetic acid, hydrogen peroxide and Amberlite® IR-120 at 55 °C in toluene or cyclopentyl methyl ether (CMPE) as a non-hazardous and green alternative solvent. The developed environmentally friendly epoxidation process allows reaching almost complete double bond conversion with an epoxy selectivity above 94% for the 12 studied VOs. Finally, obtained epoxidized vegetable oils (EVOs), characterized by an epoxy index from 2.77 to 6.77 meq. g−1 were cured using either UV or hardener-free thermal curing. Both methods enable the synthesis of 100% biobased EVO thermoset materials whose thermomechanical performances were proved to linearly increase with the EVOs' epoxy content. This paper highlights that tunable thermomechanical performances (Tα from −19 to 50 °C and Tg from −34 to 36 °C) of EVO based thermoset materials can be reached by well selecting the starting VO raw materials. Beyond the need to find a non-toxic alternative to DiGlycidyl Ether of Bisphenol-A (DGEBA), the serious subject of non-epichlorohydrin epoxy resins production remains a crucial challenge that must be solved for the next epoxy resin generations.![]()
Collapse
Affiliation(s)
- Samuel Malburet
- Specific Polymers 150 Avenue des Cocardières 34160 Castries France
| | - Chiara Di Mauro
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272 CNRS 28 Avenue Valrose 06108 Nice Cedex 02 France
| | - Camilla Noè
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia C.so Duca degli Abruzzi 24 10129 Torino Italy
| | - Alice Mija
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272 CNRS 28 Avenue Valrose 06108 Nice Cedex 02 France
| | - Marco Sangermano
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia C.so Duca degli Abruzzi 24 10129 Torino Italy
| | - Alain Graillot
- Specific Polymers 150 Avenue des Cocardières 34160 Castries France
| |
Collapse
|