1
|
Amirsadeghi A, Gudeti PKR, Tock S, Koch M, Parisi D, Kamperman M, Włodarczyk-Biegun MK. Melt Electrowriting of Elastic Scaffolds Using PEOT-PBT Multi-block Copolymer. Adv Healthc Mater 2024:e2402914. [PMID: 39659166 DOI: 10.1002/adhm.202402914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Melt electrowriting (MEW) is a powerful additive manufacturing technique to produce tissue engineering scaffolds. Despite its strength, it is limited by a small number of processable polymers. Therefore, to broaden the library of materials for MEW, we investigated the printability of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT-PBT), a thermoplastic elastomer. The effect of different printing parameters and material thermal degradation are studied. It is observed that the material is stable for >60 min at a printing temperature of 195 °C in a nitrogen environment. Next, two types of designs are printed and characterized: mesh-like and semi-random scaffolds. For both types of designs, PEOT-PBT scaffolds reveal a higher yield strain, and lower Young's modulus as compared to control polycaprolactone scaffolds. Biological studies performed using mouse embryonic fibroblasts (NIH-3T3) show good cell viability and metabolic activity on all print scaffolds. SEM imaging reveals actively migrating cells on PEOT-PBT mesh scaffolds after 24 h of culture and 98.87% of pore bridging by cells after 28 days of culture. Immunofluorescence staining shows decreased expression of alpha-smooth muscle actin from day 14 to day 28 in PEOT-PBT mesh scaffolds. Overall, it is shown that melt electrowritten PEOT-PBT scaffolds have great potential for soft tissue regeneration.
Collapse
Affiliation(s)
- Armin Amirsadeghi
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Pavan Kumar Reddy Gudeti
- Biotechnology Centre, The Silesian University of Technology, B. Krzywoustego 8, Gliwice, 44-100, Poland
| | - Sietse Tock
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Daniele Parisi
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Małgorzata Katarzyna Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
- Biotechnology Centre, The Silesian University of Technology, B. Krzywoustego 8, Gliwice, 44-100, Poland
| |
Collapse
|
2
|
Banerjee R, Ray SS. Role of Rheology in Morphology Development and Advanced Processing of Thermoplastic Polymer Materials: A Review. ACS OMEGA 2023; 8:27969-28001. [PMID: 37576638 PMCID: PMC10413379 DOI: 10.1021/acsomega.3c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
This review presents fundamental knowledge and recent advances pertaining to research on the role of rheology in polymer processing, highlights the knowledge gap between the function of rheology in various processing operations and the importance of rheology in the development, characterization, and assessment of the morphologies of polymeric materials, and offers ideas for enhancing the processabilities of polymeric materials in advanced processing operations. Rheology plays a crucial role in the morphological evolution of polymer blends and composites, influencing the type of morphology in the case of blends and the quality of dispersion in the cases of both blends and composites. The rheological characteristics of multiphase polymeric materials provide valuable information on the morphologies of these materials, thereby rendering rheology an important tool for morphological assessment. Although rheology extensively affects the processabilities of polymeric materials in all processing operations, this review focuses on the roles of rheology in film blowing, electrospinning, centrifugal jet spinning, and the three-dimensional printing of polymeric materials, which are advanced processing operations that have gained significant research interest. This review offers a comprehensive overview of the fundamentals of morphology development and the aforementioned processing techniques; moreover, it covers all vital aspects related to the tailoring of the rheological characteristics of polymeric materials for achieving superior morphologies and high processabilities of these materials in advanced processing operations. Thus, this article provides a direction for future advancements in polymer processing. Furthermore, the superiority of elongational flow over shear flow in enhancing the quality of dispersion in multiphase polymeric materials and the role of extensional rheology in the advanced processing operations of these materials, which have rarely been discussed in previous reviews, have been critically analyzed in this review. In summary, this article offers new insights into the use of rheology in material and product development during advanced polymer-processing operations.
Collapse
Affiliation(s)
- Ritima Banerjee
- Department
of Chemical Engineering, Calcutta Institute
of Technology, Banitabla, Uluberia, Howrah, 711316 West Bengal, India
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
3
|
Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022; 13:20417314211065860. [PMID: 35096363 PMCID: PMC8793124 DOI: 10.1177/20417314211065860] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Meniscal tears are a frequent orthopedic injury commonly managed by conservative
strategies to avoid osteoarthritis development descending from altered
biomechanics. Among cutting-edge approaches in tissue engineering, 3D printing
technologies are extremely promising guaranteeing for complex biomimetic
architectures mimicking native tissues. Considering the anisotropic
characteristics of the menisci, and the ability of printing over structural
control, it descends the intriguing potential of such vanguard techniques to
meet individual joints’ requirements within personalized medicine. This
literature review provides a state-of-the-art on 3D printing for meniscus
reconstruction. Experiences in printing materials/technologies, scaffold types,
augmentation strategies, cellular conditioning have been compared/discussed;
outcomes of pre-clinical studies allowed for further considerations. To date,
translation to clinic of 3D printed meniscal devices is still a challenge:
meniscus reconstruction is once again clear expression of how the integration of
different expertise (e.g., anatomy, engineering, biomaterials science, cell
biology, and medicine) is required to successfully address native tissues
complexities.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Enrico De Rose
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Silvia Barbon
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| | - Veronica Macchi
- Department of Neuroscience, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria, Padova, Italy
| |
Collapse
|
4
|
A hybrid additive manufacturing platform to create bulk and surface composition gradients on scaffolds for tissue regeneration. Nat Commun 2021; 12:500. [PMID: 33479251 PMCID: PMC7820014 DOI: 10.1038/s41467-020-20865-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Scaffolds with gradients of physico-chemical properties and controlled 3D architectures are crucial for engineering complex tissues. These can be produced using multi-material additive manufacturing (AM) techniques. However, they typically only achieve discrete gradients using separate printheads to vary compositions. Achieving continuous composition gradients, to better mimic tissues, requires material dosing and mixing controls. No such AM solution exists for most biomaterials. Existing AM techniques also cannot selectively modify scaffold surfaces to locally stimulate cell adhesion. A hybrid AM solution to cover these needs is reported here. A dosing- and mixing-enabled, dual-material printhead and an atmospheric pressure plasma jet to selectively activate/coat scaffold filaments during manufacturing were combined on one platform. Continuous composition gradients in both 2D hydrogels and 3D thermoplastic scaffolds were fabricated. An improvement in mechanical properties of continuous gradients compared to discrete gradients in the 3D scaffolds, and the ability to selectively enhance cell adhesion were demonstrated. Additive Manufacturing has had a large impact on the biomedical field but still lacks tools to generate scaffolds with gradients of physico-chemical properties. Here the authors report on the design of a 3D printer head for continuous gradient printing with an atmospheric pressure plasma jet for simultaneous surface patterning.
Collapse
|
5
|
Microstructure and Mechanical/Elastic Performance of Biobased Poly (Butylene Furanoate)- Block-Poly (Ethylene Oxide) Copolymers: Effect of the Flexible Segment Length. Polymers (Basel) 2020; 12:polym12020271. [PMID: 32013046 PMCID: PMC7077390 DOI: 10.3390/polym12020271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of this paper is to extend knowledge on biobased poly(butylene furanoate)–block–poly (ethylene oxide) (PBF-b-PEO) copolymers’ performance by studying the effect of the PEO segment’s molecular weight on the microstructure and materials behavior. As crystallization ability of PEO depends on its molecular weight, the idea was to use two PEO segment lengths, expecting that the longer one would be able to crystallize affecting the phase separation in copolymers, thus affecting their mechanical performance, including elasticity. Two series of PBF-block-PEOs with the PEO segments of 1000 and 2000 g/mol and different PBF/PEO segment ratios were synthesized by polycondensation in melt, injection molded to confirm their processability, and subjected to characterization by NMR, FTIR, DSC, DMTA, WAXS, TGA, and mechanical parameters. Indeed, the PEO2000 segment not only supported the crystallization of the PBF segments in copolymers, but at contents at least 50 wt % is getting crystallizable in the low temperature range, which results in the microstructure development and affects the mechanical properties. While the improvement in the phase separation slightly reduces the copolymers’ ability to deformation, it is beneficial for the elastic recovery of the materials. The investigations were performed on the injection molded samples reflecting the macroscopic properties of the bulk materials.
Collapse
|