1
|
Liu S, Norikane Y, Kikkawa Y. Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:872-892. [PMID: 37674543 PMCID: PMC10477993 DOI: 10.3762/bjnano.14.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
Nanoarchitectonics has attracted increasing attention owing to its potential applications in nanomachines, nanoelectronics, catalysis, and nanopatterning, which can contribute to overcoming global problems related to energy and environment, among others. However, the fabrication of ordered nanoarchitectures remains a challenge, even in two dimensions. Therefore, a deeper understanding of the self-assembly processes and substantial factors for building ordered structures is critical for tailoring flexible and desirable nanoarchitectures. Scanning tunneling microscopy is a powerful tool for revealing the molecular conformations, arrangements, and orientations of two-dimensional (2D) networks on surfaces. The fabrication of 2D assemblies involves non-covalent interactions that play a significant role in the molecular arrangement and orientation. Among the non-covalent interactions, dispersion interactions that derive from alkyl chain units are believed to be weak. However, alkyl chains play an important role in the adsorption onto substrates, as well as in the in-plane intermolecular interactions. In this review, we focus on the role of alkyl chains in the formation of ordered 2D assemblies at the solid/liquid interface. The alkyl chain effects on the 2D assemblies are introduced together with examples documented in the past decades.
Collapse
Affiliation(s)
- Suyi Liu
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8571, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yasuo Norikane
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8571, Japan
| | - Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
2
|
Sahare S, Ghoderao P, Chan Y, Lee SL. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. NANOSCALE 2023; 15:1981-2002. [PMID: 36515142 DOI: 10.1039/d2nr05264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.
Collapse
Affiliation(s)
- Sanjay Sahare
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
- Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Prachi Ghoderao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
3
|
Machado M, Oliveira AML, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, Ferreira Q. Graphene Biosensors-A Molecular Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1624. [PMID: 35630845 PMCID: PMC9145856 DOI: 10.3390/nano12101624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
Graphene is the material elected to study molecules and monolayers at the molecular scale due to its chemical stability and electrical properties. The invention of scanning tunneling microscopy has deepened our knowledge on molecular systems through imaging at an atomic resolution, and new possibilities have been investigated at this scale. Interest on studies on biomolecules has been demonstrated due to the possibility of mimicking biological systems, providing several applications in nanomedicine: drug delivery systems, biosensors, nanostructured scaffolds, and biodevices. A breakthrough came with the synthesis of molecular systems by stepwise methods with control at the atomic/molecular level. This article presents a review on self-assembled monolayers of biomolecules on top of graphite with applications in biodevices. Special attention is given to porphyrin systems adsorbed on top of graphite that are able to anchor other biomolecules.
Collapse
Affiliation(s)
- Mónica Machado
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - Alexandra M. L. Oliveira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Gabriela A. Silva
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisbon, 1649-028 Lisbon, Portugal
| | - Luís Abegão Pinto
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisbon, 1649-028 Lisbon, Portugal
| | - Quirina Ferreira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
| |
Collapse
|
4
|
Ma L, Ma C, Zhang S, Li J, Gan L, Deng K, Duan W, Li X, Zeng Q. Regulation of the Assembled Structure of a Flexible Porphyrin Derivative Containing Tetra Isophthalic Acids by Coronene or Different Pyridines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4434-4441. [PMID: 35357166 DOI: 10.1021/acs.langmuir.2c00242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on previous research, a new coassembly formed by a porphyrin derivative (IPETPP), which contains a flexible substituent of m-phthalic acid, is observed with coronene (COR) molecules at a higher concentration. Besides, a fresh IPETPP self-assembly formed at a lower concentration and another new coassembly with COR molecules are obtained. Moreover, the addition of a series of bipyridines alters the diamond arrangement of IPETPP, which enhances the stability of the two-component structures. It is unprecedented that bipyridine derivatives break intermolecular hydrogen bonds containing m-phthalic acid substituents. All the coassemblies are investigated by scanning tunneling microscopy on a highly oriented pyrolytic graphite. Combined with density functional theory, the formation mechanism of the assembled structures is revealed. These results would contribute to understanding the interfacial crystal behaviors and probably provide an efficient pathway to regulate the binary structures.
Collapse
Affiliation(s)
- Lin Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Chunyu Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Jianqiao Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Linlin Gan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Wubiao Duan
- Department of Chemistry, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaokang Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Oliveira AML, Machado M, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, Ferreira Q. Graphene Oxide Thin Films with Drug Delivery Function. NANOMATERIALS 2022; 12:nano12071149. [PMID: 35407267 PMCID: PMC9000550 DOI: 10.3390/nano12071149] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Graphene oxide has been used in different fields of nanomedicine as a manager of drug delivery due to its inherent physical and chemical properties that allow its use in thin films with biomedical applications. Several studies demonstrated its efficacy in the control of the amount and the timely delivery of drugs when it is incorporated in multilayer films. It has been demonstrated that oxide graphene layers are able to work as drug delivery or just to delay consecutive drug dosage, allowing the operation of time-controlled systems. This review presents the latest research developments of biomedical applications using graphene oxide as the main component of a drug delivery system, with focus on the production and characterization of films, in vitro and in vivo assays, main applications of graphene oxide biomedical devices, and its biocompatibility properties.
Collapse
Affiliation(s)
- Alexandra M. L. Oliveira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence: (A.M.L.O.); (Q.F.)
| | - Mónica Machado
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Gabriela A. Silva
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, CEDOC Chronic Diseases Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; (G.A.S.); (D.B.B.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Luís Abegão Pinto
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Quirina Ferreira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- Correspondence: (A.M.L.O.); (Q.F.)
| |
Collapse
|
6
|
Kwiecińska K, Stachowicz-Kuśnierz A, Jagusiak A, Roterman I, Korchowiec J. Impact of Doxorubicin on Self-Organization of Congo Red: Quantum Chemical Calculations and Molecular Dynamics Simulations. ACS OMEGA 2020; 5:19377-19384. [PMID: 32803031 PMCID: PMC7424579 DOI: 10.1021/acsomega.0c01095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Quantum-chemical calculations and molecular dynamics simulation were applied to a model self-organization process of Congo red (CR) molecules in aqueous solution and the impact of doxorubicin (DOX) molecules on such a process. It was demonstrated that both pure CR/CR and mixed CR/DOX dimers were stable. Van der Waals interactions between aromatic units were responsible for a stacked dimer formation. An important source of stabilization in the CR/CR dimer was the polarization energy. In the CR/DOX mixed dimer long range, electrostatic interactions were the main driving force leading to complexation. An implicit solvent model showed that the formation of the CR/CR dimer was favored over the CR/DOX one. Molecular dynamics simulations demonstrated rapid complexation. In the pure CR system, short sequences of ribbon-like structures were formed. Such structures might be glued by hydrogen bonds to form bigger complexes. It was shown that the aromatic part of the DOX molecule enters CR ribbons with the sugar part covering the CR ribbons. These findings demonstrated that CR may find applications as a carrier in delivering DOX molecules; however, further more extensive investigations are required.
Collapse
Affiliation(s)
- Klaudia Kwiecińska
- Faculty
of Chemistry, K. Gumiński Department of Theoretical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Stachowicz-Kuśnierz
- Faculty
of Chemistry, K. Gumiński Department of Theoretical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Jagusiak
- Medical
College, Chair of Medical Biochemistry, Jagiellonian University, Kopernika 7, 31-034 Kraków, Poland
| | - Irena Roterman
- Medical
College, Department of Bioinformatics and Telemedicine, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland
| | - Jacek Korchowiec
- Faculty
of Chemistry, K. Gumiński Department of Theoretical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
7
|
Jaroch T, Maranda-Niedbała A, Krzyżewska K, Kotwica K, Bujak P, Skórka Ł, Zagórska M, Proń A, Nowakowski R. Self-Assembly Properties of Solution Processable, Electroactive Alkoxy, and Alkylthienylene Derivatives of Fused Benzoacridines: A Scanning Tunneling Microscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5417-5427. [PMID: 32340450 PMCID: PMC7588136 DOI: 10.1021/acs.langmuir.9b03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Self-organization in mono- and bilayers on HOPG of two groups of benz[5,6]acridino[2,1,9,8-klmna]acridine derivatives, namely, 8,16-dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines with an increasing alkoxy substituent length and 8,16-bis(3- or 4- or 5-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines, i.e., three positional isomers of the same benzoacridine, is investigated by scanning tunneling microscopy. The layers were deposited from a solution of the adsorbate (in hexane or dichloromethane) and imaged ex situ at molecular resolution. In all cases, the resulting two-dimensional (2D) supramolecular organization is governed by the interactions between large, fused heteroaromatic cores that form densely packed rows separated by areas covered by substituents. In 8,16-dialkoxybenzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridines, the alkoxy substituents, separating the rows of densely packed cores, are interdigitated. An increasing substituent length leads to an intuitively expected increase in this 2D unit cell parameter that corresponds to the orientation of the substituent in the monolayer. In the case of 8,16-bis(3- or 4- or 5-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine positional isomers, the self-assembly processes are more complex. Although the determined 2D unit cell is in all cases essentially the same, the role of alkylthienylene substituents in layer formation is distinctly different. Thus, the formation of monolayers and bilayers is very sensitive to isomerism. 8,16-Bis(5-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine is capable of forming the most stable monolayer and the most labile bilayer. In the case of 8,16-bis(3-octylthiophen-2-yl)benzo[h]benz[5,6]acridino[2,1,9,8-klmna]acridine, an inverse phenomenon is observed leading to the most labile monolayer and the most stable bilayer. These differences are rationalized in terms of dissimilar molecular geometries of the studied isomers and different interdigitation patterns in their 2D supramolecular structures.
Collapse
Affiliation(s)
- Tomasz Jaroch
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | | | - Klaudyna Krzyżewska
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Kamil Kotwica
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Piotr Bujak
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Łukasz Skórka
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Małgorzata Zagórska
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Adam Proń
- Warsaw
University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Robert Nowakowski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
8
|
Snegir S, Dappe YJ, Kapitanchuk OL, Coursault D, Lacaze E. Kinked row-induced chirality driven by molecule-substrate interactions. Phys Chem Chem Phys 2020; 22:7259-7267. [PMID: 32207467 DOI: 10.1039/c9cp06519a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combining STM measurements on three different substrates (HOPG, MoS2, and Au[111]) together with DFT calculations allow for analysis of the origin of the self-assembly of 4-cyano-4'-n-decylbiphenyl (10CB) molecules into kinked row structures using a previously developed phenomenological model. This molecule has an alkyl chain with 10 carbons and a cyanobiphenyl group with a particularly large dipole moment. 10CB represents a toy model that we use here to unravel the relationship between the induced kinked structure, in particular the corresponding chirality expression, and the balanced intermolecular/molecule-substrate interaction. We show that the local ordered structure is driven by the typical alkyl chain/substrate interaction for HOPG and Au[111] and the cyanobiphenyl group/substrate interaction for MoS2. The strongest molecule/substrate interactions are observed for MoS2 and Au[111]. These strong interactions should have led to non-kinked, commensurate adsorbed structures. However, this latter appears impossible due to steric interactions between the neighboring cyanobiphenyl groups that lead to a fan-shape structure of the cyanobiphenyl packing on the three substrates. As a result, the kink-induced chirality is particularly large on MoS2 and Au[111]. A further breaking of symmetry is observed on Au[111] due to an asymmetry of the facing molecules in the rows induced by similar interactions with the substrate of both the alkyl chain and the cyanobiphenyl group. We calculate that the overall 10CB/Au[111] interaction is of the order of 2 eV per molecule. The close 10CB/MoS2 interaction, in contrast, is dominated by the cyanobiphenyl group, being particularly large possibly due to dipole-dipole interactions between the cyanobiphenyl groups and the MoS2 substrate.
Collapse
Affiliation(s)
- Sergii Snegir
- Sorbonne Université, Faculté des Sciences, CNRS, Institut des Nano-Sciences de Paris (INSP), 4 pl Jussieu 75005 Paris, France.
| | | | | | | | | |
Collapse
|