1
|
Roelli P, Hu H, Verhagen E, Reich S, Galland C. Nanocavities for Molecular Optomechanics: Their Fundamental Description and Applications. ACS PHOTONICS 2024; 11:4486-4501. [PMID: 39584033 PMCID: PMC11583369 DOI: 10.1021/acsphotonics.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 11/26/2024]
Abstract
Vibrational Raman scattering-a process where light exchanges energy with a molecular vibration through inelastic scattering-is most fundamentally described in a quantum framework where both light and vibration are quantized. When the Raman scatterer is embedded inside a plasmonic nanocavity, as in some sufficiently controlled implementations of surface-enhanced Raman scattering (SERS), the coupled system realizes an optomechanical cavity where coherent and parametrically amplified light-vibration interaction becomes a resource for vibrational state engineering and nanoscale nonlinear optics. The purpose of this Perspective is to clarify the connection between the languages and parameters used in the fields of molecular cavity optomechanics (McOM) versus its conventional, "macroscopic" counterpart and to summarize the main results achieved so far in McOM and the most pressing experimental and theoretical challenges. We aim to make the theoretical framework of molecular cavity optomechanics practically usable for the SERS and nanoplasmonics community at large. While quality factors (Q) and mode volumes (V) essentially describe the performance of a nanocavity in enhancing light-matter interaction, we point to the light-cavity coupling efficiencies (η) and optomechanical cooperativities () as the key parameters for molecular optomechanics. As an illustration of the significance of these quantities, we investigate the feasibility of observing optomechanically induced transparency with a molecular vibration-a measurement that would allow for a direct estimate of the optomechanical cooperativity.
Collapse
Affiliation(s)
- Philippe Roelli
- Nano-optics
Group, CIC nanoGUNE BRTA, E-20018 Donostia-San
Sebastián, Spain
| | - Huatian Hu
- Center
for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti 14, Arnesano, 73010, Italy
| | - Ewold Verhagen
- Center
for Nanophotonics, NWO Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Christophe Galland
- Institute
of Physics, Swiss Federal Institute of Technology
Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Center of
Quantum Science and Engineering, Swiss Federal
Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Park S, Choi J, Ko N, Mondal S, Pal U, Lee BI, Oh J. Beta cyclodextrin conjugated AuFe 3O 4 Janus nanoparticles with enhanced chemo-photothermal therapy performance. Acta Biomater 2024; 182:213-227. [PMID: 38734286 DOI: 10.1016/j.actbio.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The strategic integration of multi-functionalities within a singular nanoplatform has received growing attention for enhancing treatment efficacy, particularly in chemo-photothermal therapy. This study introduces a comprehensive concept of Janus nanoparticles (JNPs) composed of Au and Fe3O4 nanostructures intricately bonded with β-cyclodextrins (β-CD) to encapsulate 5-Fluorouracil (5-FU) and Ibuprofen (IBU). This strategic structure is engineered to exploit the synergistic effects of chemo-photothermal therapy, underscored by their exceptional biocompatibility and photothermal conversion efficiency (∼32.88 %). Furthermore, these β-CD-conjugated JNPs enhance photodynamic therapy by generating singlet oxygen (1O2) species, offering a multi-modality approach to cancer eradication. Computer simulation results were in good agreement with in vitro and in vivo assays. Through these studies, we were able to prove the improved tumor ablation ability of the drug-loaded β-CD-conjugated JNPs, without inducing adverse effects in tumor-bearing nude mice. The findings underscore a formidable tumor ablation potency of β-CD-conjugated Au-Fe3O4 JNPs, heralding a new era in achieving nuanced, highly effective, and side-effect-free cancer treatment modalities. STATEMENT OF SIGNIFICANCE: The emergence of multifunctional nanoparticles marks a pivotal stride in cancer therapy research. This investigation unveils Janus nanoparticles (JNPs) amalgamating gold (Au), iron oxide (Fe3O4), and β-cyclodextrins (β-CD), encapsulating 5-Fluorouracil (5-FU) and Ibuprofen (IBU) for synergistic chemo-photothermal therapy. Demonstrating both biocompatibility and potent photothermal properties (∼32.88 %), these JNPs present a promising avenue for cancer treatment. Noteworthy is their heightened photodynamic efficiency and remarkable tumor ablation capabilities observed in vitro and in vivo, devoid of adverse effects. Furthermore, computational simulations validate their interactions with cancer cells, bolstering their utility as an emerging therapeutic modality. This endeavor pioneers a secure and efficacious strategy for cancer therapy, underscoring the significance of β-CD-conjugated Au-Fe3O4 JNPs as innovative nanoplatforms with profound implications for the advancement of cancer therapy.
Collapse
Affiliation(s)
- Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Namsuk Ko
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Umapada Pal
- Institute of Physics, Autonomous University of Puebla, Puebla 72570, Mexico
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea; Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea.
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea; Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Pei Q, Zheng X, Tan J, Luo Y, Ye S. Probing the Local Near-Field Intensity of Plasmonic Nanoparticles in the Mid-infrared Spectral Region. J Phys Chem Lett 2024; 15:5390-5396. [PMID: 38739421 DOI: 10.1021/acs.jpclett.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The enhanced local field of gold nanoparticles (AuNPs) in mid-infrared spectral regions is essential for improving the detection sensitivity of vibrational spectroscopy and mediating photochemical reactions. However, it is still challenging to measure its intensity at subnanometer scales. Here, using the NO2 symmetric stretching mode (νNO2) of self-assembled 4-nitrothiophenol (4-NTP) monolayers on AuNPs as a model, we demonstrated that the percentage of excited νNO2 mode, determined by femtosecond time-resolved sum-frequency generation vibrational spectroscopy, allows us to directly detect the local field intensity of the AuNP surface in subnanometer ranges. The local-field intensity is tuned by AuNP diameters. An approximate 17-fold enhancement was observed for the local field on 80 nm AuNPs compared to the Au film. Additionally, the local field can regulate the anharmonicity of the νNO2 mode by synergistic effect with molecular orientation. This work offers a promising approach to probe the local field intensity distribution around plasmonic NP surfaces at subnanometer scales.
Collapse
Affiliation(s)
- Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
4
|
Tan J, Pei Q, Zhang L, Ye S. Evidence for a Local Field Effect in Surface Plasmon-Enhanced Sum Frequency Generation Vibrational Spectra. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6099-6105. [PMID: 35499917 DOI: 10.1021/acs.langmuir.2c00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface plasmon-enhanced vibrational spectroscopy has been demonstrated to be an important highly sensitive diagnostic technique, but its enhanced mechanism is yet to be explored. In this study, we couple femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) with surface plasmon generated by the excitation of localized gold nanorods/nanoparticles and investigate the plasmonically enhanced factors (EFs) of SFG signals from poly(methyl methacrylate) films. Through monitoring the SFG intensity of carbonyl and ester methyl groups, we have established a correlation between EFs and the coupling of localized surface plasmon resonance with SFG and visible beams. It is found that the total enhanced factor is approximately proportional to the square of an enhanced factor of the SFG electromagnetic field and the fourth power of the enhanced factor of the visible electromagnetic field. The local field effect is roughly expressed to be the square of an enhanced factor of the visible electromagnetic field. This finding will help to guide the experimental design of plasmon-enhanced SFG to drastically improve the detection sensitivity and thus provide greater insight into the ultrafast dynamics near plasmonic surfaces.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Liang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Two-Colour Sum-Frequency Generation Spectroscopy Coupled to Plasmonics with the CLIO Free Electron Laser. PHOTONICS 2022. [DOI: 10.3390/photonics9020055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nonlinear plasmonics requires the use of high-intensity laser sources in the visible and near/mid-infrared spectral ranges to characterise the potential enhancement of the vibrational fingerprint of chemically functionalised nanostructured interfaces aimed at improving the molecular detection threshold in nanosensors. We used Two-Colour Sum-Frequency Generation (2C-SFG) nonlinear optical spectroscopy coupled to the European CLIO Free Electron Laser in order to highlight an energy transfer in organic and inorganic interfaces built on a silicon substrate. We evidence that a molecular pollutant, such as thiophenol molecules adsorbed on small gold metal nanospheres grafted on silicon, was detected at the monolayer scale in the 10 µm infrared spectral range, with increasing SFG intensity of three specific phenyl ring vibration modes reaching two magnitude orders from blue to green–yellow excitation wavelengths. This observation is related to a strong plasmonic coupling to the thiophenol molecules vibrations. The high level of gold nanospheres aggregation on the substrate allows us to dramatically increase the presence of hotspots, revealing collective plasmon modes based on strong local electric fields between the gold nanoparticles packed in close contact on the substrate. This configuration favors detection of Raman active vibration modes, for which 2C-SFG spectroscopy is particularly efficient in this unusual infrared spectral range.
Collapse
|
6
|
Yu S, Kim D, Qi Z, Louisia S, Li Y, Somorjai GA, Yang P. Nanoparticle Assembly Induced Ligand Interactions for Enhanced Electrocatalytic CO 2 Conversion. J Am Chem Soc 2021; 143:19919-19927. [PMID: 34783547 DOI: 10.1021/jacs.1c09777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The microenvironment in which the catalysts are situated is as important as the active sites in determining the overall catalytic performance. Recently, it has been found that nanoparticle (NP) surface ligands can actively participate in creating a favorable catalytic microenvironment, as part of the nanoparticle/ordered-ligand interlayer (NOLI), for selective CO2 conversion. However, much of the ligand-ligand interactions presumed essential to the formation of such a catalytic interlayer remains to be understood. Here, by varying the initial size of NPs and utilizing spectroscopic and electrochemical techniques, we show that the assembly of NPs leads to the necessary ligand interactions for the NOLI formation. The large surface curvature of small NPs promotes strong noncovalent interactions between ligands of adjacent NPs through ligand interdigitation. This ensures their collective behavior in electrochemical conditions and gives rise to the structurally ordered ligand layer of the NOLI. Thus, the use of smaller NPs was shown to result in a greater catalytically effective NOLI area associated with desolvated cations and electrostatic stabilization of intermediates, leading to the enhancement of intrinsic CO2-to-CO turnover. Our findings highlight the potential use of tailored microenvironments for NP catalysis by controlling its surface ligand interactions.
Collapse
Affiliation(s)
- Sunmoon Yu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dohyung Kim
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhiyuan Qi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sheena Louisia
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yifan Li
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Gabor A Somorjai
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Zhang YJ, Radjenovic PM, Zhou XS, Zhang H, Yao JL, Li JF. Plasmonic Core-Shell Nanomaterials and their Applications in Spectroscopies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005900. [PMID: 33811422 DOI: 10.1002/adma.202005900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/24/2021] [Indexed: 05/22/2023]
Abstract
Plasmonic core-shell nanostructures have attracted considerable attention in the scientific community recently due to their highly tunable optical properties. Plasmon-enhanced spectroscopies are one of the main applications of plasmonic nanomaterials. When excited by an incident laser of suitable wavelength, strong and highly localized electromagnetic (EM) fields are generated around plasmonic nanomaterials, which can significantly boost excitation and/or radiation processes that amplify Raman, fluorescence, or nonlinear signals and improve spectroscopic sensitivity. Herein, recent developments in plasmon-enhanced spectroscopies utilizing core-shell nanostructures are reviewed, including shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), plasmon-enhanced fluorescence spectroscopy, and plasmon-enhanced nonlinear spectroscopy.
Collapse
Affiliation(s)
- Yue-Jiao Zhang
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Petar M Radjenovic
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Hua Zhang
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jian-Lin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian-Feng Li
- College of Energy, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Mandal A, Ziegler LD. Vibrational line shape effects in plasmon-enhanced stimulated Raman spectroscopies. J Chem Phys 2021; 155:194701. [PMID: 34800946 DOI: 10.1063/5.0067301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A density matrix treatment of plasmon-enhanced (PE) stimulated Raman spectroscopies is developed. Specifically, PE stimulated Raman Gain/Loss (PE-SRG/L) and coherent anti-Stokes Raman scattering (PE-CARS) due to monochromatic excitation and PE femtosecond stimulated Raman spectroscopy (PE-FSRS) are considered. A Lorentz oscillator model is used to explicitly describe the time dependence of plasmon-enhanced optical fields. These temporal characteristics are required for a density matrix based description of all plasmon-enhanced nonlinear molecular spectroscopies. Dispersive vibrational line shapes in PE-SRG/L and PE-FSRS spectra are shown to result primarily from terms proportional to the square of the complex optical field enhancement factor. The dependence on the plasmon resonance, picosecond and femtosecond pulse characteristics, and molecular vibrational properties are evident in the density matrix derived PE-FSRS intensity expression. The difference in signal detection mechanisms accounts for the lack of dispersive line shapes in PE spontaneous Raman spectroscopy. This density matrix treatment of PE-FSRS line shapes is compared with prior coupled wave results.
Collapse
Affiliation(s)
- Aritra Mandal
- Intel Corporation, 2501 NW 229th Ave., Hillsboro, Oregon 97124, USA
| | - L D Ziegler
- Department of Chemistry, Photonics Center Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
9
|
Xue S, Chen SL, Ling Q, Yuan Q, Gan W. Photocatalytic redox on the surface of colloidal silver nanoparticles revealed by second harmonic generation and two-photon luminescence. Phys Chem Chem Phys 2021; 23:19752-19759. [PMID: 34524302 DOI: 10.1039/d1cp02722k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The redox of silver on the surface of Ag nanoparticles (AgNPs) has received extensive attention because of its significant impact on the biological, physical and chemical properties of AgNPs and their applications. Here we demonstrate that the surface redox reaction of AgNPs in colloids may be investigated by the second harmonic generation (SHG) and two-photon luminescence (TPL) emission from the AgNPs. It was revealed that the oxidation of silver on the surface of AgNPs was accelerated upon femtosecond laser excitation, accompanied by a decrease in the SHG and TPL emissions from the AgNPs. The photon-induced reduction of oxidized silver on AgNPs and the formation of surface defects were also revealed by the changes in the SHG and TPL emissions. Size and morphology changes have not been detected by dynamic light scattering and TEM measurements. The changes in the UV-vis extinction spectra were also very weak compared with previous reports. However, the occurrence of redox reactions on the Ag surface upon femtosecond laser irradiation has been confirmed by multiple control experiments. This work demonstrates that SHG and TPL can sensitively probe the subtle structural change on the surface of AgNPs.
Collapse
Affiliation(s)
- Shan Xue
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Shun-Li Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Qing Ling
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, also School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
10
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
A Unified Mathematical Formalism for First to Third Order Dielectric Response of Matter: Application to Surface-Specific Two-Colour Vibrational Optical Spectroscopy. Symmetry (Basel) 2021. [DOI: 10.3390/sym13010153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
To take advantage of the singular properties of matter, as well as to characterize it, we need to interact with it. The role of optical spectroscopies is to enable us to demonstrate the existence of physical objects by observing their response to light excitation. The ability of spectroscopy to reveal the structure and properties of matter then relies on mathematical functions called optical (or dielectric) response functions. Technically, these are tensor Green’s functions, and not scalar functions. The complexity of this tensor formalism sometimes leads to confusion within some articles and books. Here, we do clarify this formalism by introducing the physical foundations of linear and non-linear spectroscopies as simple and rigorous as possible. We dwell on both the mathematical and experimental aspects, examining extinction, infrared, Raman and sum-frequency generation spectroscopies. In this review, we thus give a personal presentation with the aim of offering the reader a coherent vision of linear and non-linear optics, and to remove the ambiguities that we have encountered in reference books and articles.
Collapse
|
12
|
Guo W, Liu B, He Y, You E, Zhang Y, Huang S, Wang J, Wang Z. Plasmonic Gold Nanohole Arrays for Surface-Enhanced Sum Frequency Generation Detection. NANOMATERIALS 2020; 10:nano10122557. [PMID: 33352752 PMCID: PMC7766786 DOI: 10.3390/nano10122557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 01/06/2023]
Abstract
Nobel metal nanohole arrays have been used extensively in chemical and biological systems because of their fascinating optical properties. Gold nanohole arrays (Au NHAs) were prepared as surface plasmon polariton (SPP) generators for the surface-enhanced sum-frequency generation (SFG) detection of 4-Mercaptobenzonitrile (4-MBN). The angle-resolved reflectance spectra revealed that the Au NHAs have three angle-dependent SPP modes and two non-dispersive localized surface plasmon resonance (LSPR) modes under different structural orientation angles (sample surface orientation). An enhancement factor of ~30 was achieved when the SPP and LSPR modes of the Au NHAs were tuned to match the incident visible (VIS) and output SFG, respectively. This multi-mode matching strategy provided flexible controls and selective spectral windows for surface-enhanced measurements, and was especially useful in nonlinear spectroscopy where more than one light beam was involved. The structural orientation- and power-dependent performance demonstrated the potential of plasmonic NHAs in SFG and other nonlinear sensing applications, and provided a promising surface molecular analysis development platform.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Bowen Liu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Correspondence: (B.L.); (Z.W.)
| | - Yuhan He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Enming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Yongyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Shengchao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Jingjing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
| | - Zhaohui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (W.G.); (Y.H.); (E.Y.); (Y.Z.); (S.H.); (J.W.)
- Correspondence: (B.L.); (Z.W.)
| |
Collapse
|
13
|
Zhang L, Tan J, Pei Q, Ye S. Film thickness and surface plasmon tune the contribution of SFG signals from buried interface and air surface. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Liang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Quanbing Pei
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Wallentine S, Bandaranayake S, Biswas S, Baker LR. Plasmon-Resonant Vibrational Sum Frequency Generation of Electrochemical Interfaces: Direct Observation of Carbon Dioxide Electroreduction on Gold. J Phys Chem A 2020; 124:8057-8064. [DOI: 10.1021/acs.jpca.0c04268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Spencer Wallentine
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Savini Bandaranayake
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Somnath Biswas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - L. Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Abstract
Plasmonics is one of the most used domains for applications to optical devices, biological and chemical sensing, and non-linear optics, for instance. Indeed, plasmonics enables confining the electromagnetic field at the nanoscale. The resonances of plasmonic systems can be set in a given domain of a spectrum by adjusting the geometry, the spatial arrangement, and the nature of the materials. Moreover, symmetry breaking can be used for the further improvement of the optical properties of the plasmonic systems. In the last three years, great advances in or insights into the use of symmetry breaking in plasmonics have occurred. In this mini-review, we present recent insights and advances on the use of symmetry breaking in plasmonics for applications to chemistry, sensing, devices, non-linear optics, and chirality.
Collapse
|
16
|
Dalstein L, Humbert C, Ben Haddada M, Boujday S, Barbillon G, Busson B. The Prevailing Role of Hotspots in Plasmon-Enhanced Sum-Frequency Generation Spectroscopy. J Phys Chem Lett 2019; 10:7706-7711. [PMID: 31765159 DOI: 10.1021/acs.jpclett.9b03064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The plasmonic amplification of nonlinear vibrational sum frequency spectroscopy (SFG) at the surfaces of gold nanoparticles is systematically investigated by tuning the incident visible wavelength. The SFG spectra of dodecanethiol-coated gold nanoparticles chemically deposited on silicon are recorded for 20 visible wavelengths. The vibrational intensities of thiol methyl stretches extracted from the experimental measurements vary with the visible color of the SFG process and show amplification by coupling to plasmon excitation. Because the enhancement is maximal in the orange-red region rather than in the green, as expected from the dipolar model for surface plasmon resonances, it is attributed mostly to hotspots created in particle multimers, in spite of their low surface densities. A simple model accounting for the longitudinal surface plasmons of multimers allows the recovery of the experimental spectral dispersion.
Collapse
Affiliation(s)
- Laetitia Dalstein
- Laboratoire de Chimie Physique, CNRS, Univ. Paris-Sud , Université Paris-Saclay , Bâtiment 201 P2 , F-91405 Orsay , France
- Institute of Physics , Academia Sinica , Taipei 11529 , Taiwan
| | - Christophe Humbert
- Laboratoire de Chimie Physique, CNRS, Univ. Paris-Sud , Université Paris-Saclay , Bâtiment 201 P2 , F-91405 Orsay , France
| | - Maroua Ben Haddada
- Sorbonne Université , CNRS, Laboratoire de Réactivité de Surface (LRS) , 4 place Jussieu , F-75005 Paris , France
| | - Souhir Boujday
- Sorbonne Université , CNRS, Laboratoire de Réactivité de Surface (LRS) , 4 place Jussieu , F-75005 Paris , France
| | - Grégory Barbillon
- EPF-Ecole d'Ingénieurs , 3 bis rue Lakanal , F-92330 Sceaux , France
| | - Bertrand Busson
- Laboratoire de Chimie Physique, CNRS, Univ. Paris-Sud , Université Paris-Saclay , Bâtiment 201 P2 , F-91405 Orsay , France
| |
Collapse
|
17
|
Garling T, Campen RK, Wolf M, Thämer M. A General Approach To Combine the Advantages of Collinear and Noncollinear Spectrometer Designs in Phase-Resolved Second-Order Nonlinear Spectroscopy. J Phys Chem A 2019; 123:11022-11030. [PMID: 31790247 PMCID: PMC6935974 DOI: 10.1021/acs.jpca.9b09927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Recent years have seen a huge progress in the development
of phase-sensitive
second-order laser spectroscopy which has proven to be a very powerful
tool for the investigation of interfaces. In these techniques, the
nonlinear interaction between two short laser pulses and the sample
yields a signal pulse which subsequently interferes with a third pulse,
the so-called local oscillator. To obtain accurate phase information,
the relative phases between the signal and local oscillator pulses
must be stabilized and their timings precisely controlled. Despite
much progress made, fulfilling both requirements remains a formidable
experimental challenge. The two common approaches employ different
beam geometries which each yields its particular advantages and deficiencies.
While noncollinear spectrometers allow for a relatively simple timing
control they typically yield poor phase stability and require a challenging
alignment. Collinear approaches in contrast come with a simplified
alignment and improved phase stability but typically suffer from a
highly limited timing control. In this contribution we present a general
experimental solution which allows for combining the advantages of
both approaches while being compatible with most of the common spectrometer
types. On the basis of a collinear geometry, we exploit different
selected polarization states of the light pulses in well-defined places
in the spectrometer to achieve a precise timing control. The combination
of this technique with a balanced detection scheme allows for the
acquisition of highly accurate phase-resolved nonlinear spectra without
any loss in experimental flexibility. In fact, we show that the implementation
of this technique allows us to employ advanced pulse timing schemes
inside the spectrometer, which can be used to suppress nonlinear background
signals and extend the capabilities of our spectrometer to measure
phase-resolved sum frequency spectra of interfaces in a liquid cell.
Collapse
Affiliation(s)
- Tobias Garling
- Department of Physical Chemistry , Fritz Haber Institute of the Max Planck Society , 14195 Berlin , Germany
| | - R Kramer Campen
- Department of Physical Chemistry , Fritz Haber Institute of the Max Planck Society , 14195 Berlin , Germany.,Faculty of Physics , University of Duisburg-Essen , Lotharstraβe 1 , 47048 Duisburg , Germany
| | - Martin Wolf
- Department of Physical Chemistry , Fritz Haber Institute of the Max Planck Society , 14195 Berlin , Germany
| | - Martin Thämer
- Department of Physical Chemistry , Fritz Haber Institute of the Max Planck Society , 14195 Berlin , Germany
| |
Collapse
|
18
|
Barbillon G. Plasmonics and its Applications. MATERIALS 2019; 12:ma12091502. [PMID: 31072026 PMCID: PMC6539533 DOI: 10.3390/ma12091502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Plasmonics is a quickly developing subject that combines fundamental research and applications ranging from areas such as physics to engineering, chemistry, biology, medicine, food sciences, and the environmental sciences. Plasmonics appeared in the 1950s with the discovery of surface plasmon polaritons. Then, plasmonics went through a novel impulsion in mid-1970s when the surface-enhanced Raman scattering was discovered. Nevertheless, it is in this last decade that a very significant explosion of plasmonics and its applications has occurred. Thus, this special issue reports a snapshot of current advances in these various areas of plasmonics and its applications presented in the format of several articles and reviews written by worldwide researchers of this topic.
Collapse
|