1
|
Messaoudi H, Yaşa Atmaca G, Türkkol A, Bilgin MD, Erdoğmuş A. Monitoring of singlet oxygen generation of a novel Schiff-base substituted silicon phthalocyanines by sono-photochemical studies and in vitro activities on prostate cancer cell. J Biol Inorg Chem 2024; 29:303-314. [PMID: 38727821 PMCID: PMC11111517 DOI: 10.1007/s00775-024-02055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 05/24/2024]
Abstract
This study demonstrates the potential of sono-photodynamic therapy as an effective approach for enhancing singlet oxygen generation using the synthesized Schiff-base diaxially substituted silicon phthalocyanines. In photochemical studies, the singlet oxygen quantum yields (Φ∆) were determined as 0.43 for Si1a, 0.94 for Q-Si1a, 0.58 for S-Si1a, and 0.49 for B-Sia1. In sono-photochemical studies, the Φ∆ values were reached to 0.67 for Si1a, 1.06 for Q-Si1a, 0.65 for S-Si1a, and 0.67 for B-Sia1. In addition, this study demonstrates the therapeutic efficacy of phthalocyanines synthesized as sensitizers on the PC3 prostate cancer cell line through in vitro experiments. The application of these treatment modalities exhibited notable outcomes, leading to a substantial decrease in cell viability within the PC3 prostate cancer cell line. These findings highlight the potential of utilizing these synthesized phthalocyanines as promising therapeutic agents for prostate cancer treatment.
Collapse
Affiliation(s)
- Hiba Messaoudi
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey
| | - Göknur Yaşa Atmaca
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey.
| | - Ayşegül Türkkol
- Faculty of Medicine, Department of Biophysics, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Mehmet Dinçer Bilgin
- Faculty of Medicine, Department of Biophysics, Aydın Adnan Menderes University, 09010, Aydın, Turkey
| | - Ali Erdoğmuş
- Department of Chemistry, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, 34220, Istanbul, Turkey.
| |
Collapse
|
2
|
Sundaresan C, Josse P, Vebber MC, Brusso J, Lu J, Tao Y, Alem S, Lessard BH. Design of ternary additive for organic photovoltaics: a cautionary tale. RSC Adv 2022; 12:10029-10036. [PMID: 35424912 PMCID: PMC8965687 DOI: 10.1039/d2ra00540a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Silicon phthalocyanines as ternary additives are a promising way to increase the performance of organic photovoltaics. The miscibility of the additive and the donor polymer plays a significant role in the enhancement of the device performance, therefore, ternary additives can be designed to better interact with the conjugated polymer. We synthesized N-9′-heptadecanyl-2,7-carbazole functionalized SiPc ((CBzPho)2-SiPc), a ternary additive with increased miscibility in poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT). The resulting additive was included into PCDTBT and [6,6]-phenyl C71 butyric acid methyl ester as bulk (PC71BM) heterojunction OPV devices as a ternary additive. While the (CBzPho)2-SiPc demonstrated strong EQE >30% contribution in the range of 650–730 nm, the overall performance was reduced because (CBzPho)2-SiPc acted as a hole trap due to its high-lying HOMO energy level. This study demonstrates the importance of the solubility, miscibility, and energy level engineering of the ternary additive when designing organic photovoltaic devices. Silicon phthalocyanines with carbazole axial functional groups were synthesized to improve the miscibility in PCDTBT and for use as ternary additives in organic photovoltaics.![]()
Collapse
Affiliation(s)
- Chithiravel Sundaresan
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Pierre Josse
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,Department of Chemistry and Biomolecular Science, University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Mário C Vebber
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada
| | - Jaclyn Brusso
- Department of Chemistry and Biomolecular Science, University of Ottawa 150 Louis-Pasteur Pvt Ottawa ON K1N 6N5 Canada
| | - Jianping Lu
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Ye Tao
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Salima Alem
- Advanced Electronics and Photonics Research Centre, National Research Council of Canada Ottawa ON K1A 0R6 Canada
| | - Benoît H Lessard
- Department of Chemical & Biological Engineering, University of Ottawa 161 Louis Pasteur Ottawa ON K1N 6N5 Canada .,School of Electrical Engineering and Computer Science, University of Ottawa 800 King Edward Ave. Ottawa ON K1N 6N5 Canada
| |
Collapse
|
3
|
Vebber MC, Rice NA, Brusso JL, Lessard BH. Variance-resistant PTB7 and axially-substituted silicon phthalocyanines as active materials for high-Voc organic photovoltaics. Sci Rep 2021; 11:15347. [PMID: 34321540 PMCID: PMC8319386 DOI: 10.1038/s41598-021-94704-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
While the efficiency of organic photovoltaics (OPVs) has improved drastically in the past decade, such devices rely on exorbitantly expensive materials that are unfeasible for commercial applications. Moreover, examples of high voltage single-junction devices, which are necessary for several applications, particularly low-power electronics and rechargeable batteries, are lacking in literature. Alternatively, silicon phthalocyanines (R2-SiPc) are inexpensive, industrially scalable organic semiconductors, having a minimal synthetic complexity (SC) index, and are capable of producing high voltages when used as acceptors in OPVs. In the present work, we have developed high voltage OPVs composed of poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4 b]thiophenediyl}) (PTB7) and an SiPc derivative ((3BS)2-SiPc). While changes to the solvent system had a strong effect on performance, interestingly, the PTB7:(3BS)2-SiPc active layer were robust to spin speed, annealing and components ratio. This invariance is a desirable characteristic for industrial production. All PTB7:(3BS)2-SiPc devices produced high open circuit voltages between 1.0 and 1.07 V, while maintaining 80% of the overall efficiency, when compared to their fullerene-based counterpart.
Collapse
Affiliation(s)
- Mario C Vebber
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Nicole A Rice
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Jaclyn L Brusso
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada.
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
4
|
Lessard BH. The Rise of Silicon Phthalocyanine: From Organic Photovoltaics to Organic Thin Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31321-31330. [PMID: 34197065 DOI: 10.1021/acsami.1c06060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicon phthalocyanines are emerging n-type semiconductors for use in organic photovoltaics (OPVs) and organic thin-film transistors (OTFTs). Their low synthetic complexity paired with their versatile axial group facilitates the fine-tuning of their chemical properties, solution properties and processing characteristics without significantly affecting their frontier orbital levels or their absorption properties. The crystal engineering and film forming characteristics of silicon phthalocyanine semiconductors can be tuned through appropriate axial group functionalization, therefore facilitating their integration into both OTFTs and OPVs by solution processing or vapor deposition. This Spotlight on Applications will discuss recent advances in the integration of this exciting class of phthalocyanine into OTFTs and OPVs and highlights their promising future.
Collapse
Affiliation(s)
- Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
5
|
Cranston RR, Vebber MC, Berbigier JF, Rice NA, Tonnelé C, Comeau ZJ, Boileau NT, Brusso JL, Shuhendler AJ, Castet F, Muccioli L, Kelly TL, Lessard BH. Thin-Film Engineering of Solution-Processable n-Type Silicon Phthalocyanines for Organic Thin-Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1008-1020. [PMID: 33370100 DOI: 10.1021/acsami.0c17657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal and metalloid phthalocyanines are an abundant and established class of materials widely used in the dye and pigment industry as well as in commercial photoreceptors. Silicon phthalocyanines (SiPcs) are among the highest-performing n-type semiconductor materials in this family when used in organic thin-film transistors (OTFTs) as their performance and solid-state arrangement are often increased through axial substitution. Herein, we study eight axially substituted SiPcs and their integration into solution-processed n-type OTFTs. Electrical characterization of the OTFTs, combined with atomic force microscopy (AFM), determined that the length of the alkyl chain affects device performance and thin-film morphology. The effects of high-temperature annealing and spin coating time on film formation, two key processing steps for fabrication of OTFTs, were investigated by grazing-incidence wide-angle X-ray scattering (GIWAXS) and X-ray diffraction (XRD) to elucidate the relationship between thin-film microstructure and device performance. Thermal annealing was shown to change both film crystallinity and SiPc molecular orientation relative to the substrate surface. Spin time affected film crystallinity, morphology, and interplanar d-spacing, thus ultimately modifying device performance. Of the eight materials studied, bis(tri-n-butylsilyl oxide) SiPc exhibited the greatest electron field-effect mobility (0.028 cm2 V-1 s-1, a threshold voltage of 17.6 V) of all reported solution-processed SiPc derivatives.
Collapse
Affiliation(s)
- Rosemary R Cranston
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Mário C Vebber
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Jônatas Faleiro Berbigier
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| | - Nicole A Rice
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Claire Tonnelé
- Donostia International Physics Center, 4 Paseo Manuel de Lardizabal, 20018 Donostia, Euskadi, Spain
| | - Zachary J Comeau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Nicholas T Boileau
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Jaclyn L Brusso
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Adam J Shuhendler
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
| | - Frédéric Castet
- Institut des Sciences Moléculaires, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
| | - Luca Muccioli
- Institut des Sciences Moléculaires, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence, France
- Department of Industrial Chemistry, University of Bologna, 4 Viale Risorgimento, 40136 Bologna, Italy
| | - Timothy L Kelly
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, Canada S7N 5C9
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON, Canada K1N 6N5
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave. Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
6
|
Mitra K, Hartman MCT. Silicon phthalocyanines: synthesis and resurgent applications. Org Biomol Chem 2021; 19:1168-1190. [DOI: 10.1039/d0ob02299c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Their unique axial bonds and NIR optical properties have made silicon phthalocyanines (SiPcs) valuable compounds. Herein, we present key synthetic strategies and emerging applications of SiPcs over the past decade.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| | - Matthew C. T. Hartman
- Department of Chemistry
- Virginia Commonwealth University
- Richmond
- USA
- Massey Cancer Center
| |
Collapse
|
7
|
Hussein BA, Shakeel Z, Turley AT, Bismillah AN, Wolfstadt KM, Pia JE, Pilkington M, McGonigal PR, Adler MJ. Control of Porphyrin Planarity and Aggregation by Covalent Capping: Bissilyloxy Porphyrin Silanes. Inorg Chem 2020; 59:13533-13541. [PMID: 32862636 DOI: 10.1021/acs.inorgchem.0c01891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyrins are cornerstone functional materials that are useful in a wide variety of settings, ranging from molecular electronics to biology and medicine. Their applications are often hindered, however, by poor solubilities that result from their extended, solvophobic aromatic surfaces. Attempts to counteract this problem by functionalizing their peripheries have been met with only limited success. Here, we demonstrate a versatile strategy to tune the physical and electronic properties of porphyrins using an axial functionalization approach. Porphyrin silanes (PorSils) and bissilyloxy PorSils (SOPS) are prepared from porphyrins by operationally simple κ4N-silylation protocols, introducing bulky silyloxy "caps" that are central and perpendicular to the planar porphyrin. While porphyrins typically form either J- or H-aggregates, SOPS do not self-associate in the same manner: the silyloxy axial substituents dramatically improve the solubility by inhibiting aggregation. Moreover, axial porphyrin functionalization offers convenient handles through which optical, electronic, and structural properties of the porphyrin core can be modulated. We observe that the identity of the silyloxy substituent impacts the degree of planarity of the porphyrin in the solid state as well as the redox potentials.
Collapse
Affiliation(s)
- Burhan A Hussein
- Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada.,Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Zainab Shakeel
- Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Andrew T Turley
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Aisha N Bismillah
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom.,Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Kody M Wolfstadt
- Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Julia E Pia
- Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Paul R McGonigal
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Marc J Adler
- Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
8
|
Vebber MC, Grant TM, Brusso JL, Lessard BH. Bis(trialkylsilyl oxide) Silicon Phthalocyanines: Understanding the Role of Solubility in Device Performance as Ternary Additives in Organic Photovoltaics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2612-2621. [PMID: 32093478 DOI: 10.1021/acs.langmuir.9b03772] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of ternary additives in organic photovoltaics is a promising route for improving overall device performance. Silicon phthalocyanines (SiPcs) are ideal candidates due to their absorption profile, low cost, and ease of synthesis and chemical tunability. However, to date, only a few examples have been reported and specific strategies for aiding in the design of improved ternary additives have not been established. In this study, we report a relationship between ternary additive solubility and device performance, demonstrating that device performance is maximized when the SiPc additive solubility is similar to that of the donor polymer (P3HT, in this case). This improved performance can be attributed to the favored interfacial precipitation of the SiPc when its solubility matches that of the other components of the thin film. The power conversion efficiency (PCE) varied from 2.4% to 3.4% by using axially substituted SiPcs with different solubilities, where the best ternary additive led to a 25% increase in PCE compared to that of the baseline device.
Collapse
Affiliation(s)
- Mário C Vebber
- Department of Biological and Chemical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Trevor M Grant
- Department of Biological and Chemical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Jaclyn L Brusso
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Benoît H Lessard
- Department of Biological and Chemical Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|