1
|
Manawar S, Myrick E, Awad P, Hung V, Hinton C, Kenter K, Bovid K, Li Y. Use of allograft bone matrix in clinical orthopedics. Regen Med 2024; 19:247-256. [PMID: 39028538 PMCID: PMC11321266 DOI: 10.1080/17460751.2024.2353473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 07/20/2024] Open
Abstract
Clinical orthopedics continuously aims to improve methods for bone formation. Clinical applications where bone formation is necessary include critical long bone defects in orthopedic trauma or tumor patients. Though some biomaterials combined with autologous stem cells significantly improve bone repair, critical-size damages are still challenged with the suitable implantation of biomaterials and donor cell survival. Extracellular matrix (ECM) is the fundamental structure in tissues that can nest and nourish resident cells as well as support specific functions of the tissue type. ECM also plays a role in cell signaling to promote bone growth, healing and turnover. In the last decade, the use of bone-derived ECMs or ECM-similar biomaterials have been widely investigated, including decellularized and demineralized bone ECM. In this article, we reviewed the current productions and applications of decellularized and demineralized bone matrices. We also introduce the current study of whole limb decellularization and recellularization.
Collapse
Affiliation(s)
- Shaan Manawar
- Department of Orthopedic Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Erica Myrick
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Peter Awad
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Victor Hung
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Cassidy Hinton
- Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Keith Kenter
- Department of Orthopedic Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Karen Bovid
- Department of Orthopedic Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| | - Yong Li
- Department of Orthopedic Surgery, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI49008, USA
| |
Collapse
|
2
|
Toni R, Barbaro F, Di Conza G, Zini N, Remaggi G, Elviri L, Spaletta G, Quarantini E, Quarantini M, Mosca S, Caravelli S, Mosca M, Ravanetti F, Sprio S, Tampieri A. A bioartificial and vasculomorphic bone matrix-based organoid mimicking microanatomy of flat and short bones. J Biomed Mater Res B Appl Biomater 2024; 112:e35329. [PMID: 37898921 DOI: 10.1002/jbm.b.35329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
We engineered an in vitro model of bioartificial 3D bone organoid consistent with an anatomical and vascular microenvironment common to mammalian flat and short bones. To achieve this, we chose the decellularized-decalcified matrix of the adult male rat scapula, implemented with the reconstruction of its intrinsic vessels, obtained through an original intravascular perfusion with polylevolactic (PLLA), followed by coating of the PLLA-fabricated vascularization with rat tail collagen. As a result, the 3D bone and vascular geometry of the native bone cortical and cancellous compartments was reproduced, and the rat tail collagen-PLLA biomaterial could in vitro act as a surrogate of the perivascular extracellular matrix (ECM) around the wall of the biomaterial-reconstituted cancellous vessels. As a proof-of-concept of cell compatibility and site-dependent osteoinductive properties of this bioartificial 3D construct, we show that it in vitro leads to a time-dependent microtopographic positioning of rat mesenchymal stromal cells (MSCs), initiating an osteogenic fate in relation to the bone compartment. In addition, coating of PLLA-reconstructed vessels with rat tail collagen favored perivascular attachment and survival of MSC-like cells (mouse embryonic fibroblasts), confirming its potentiality as a perivascular stroma for triggering competence of seeded MSCs. Finally, in vivo radiographic topography of bone lesions in the human jaw and foot tarsus of subjects with primary osteoporosis revealed selective bone cortical versus cancellous involvement, suggesting usefulness of a human 3D bone organoid engineered with the same principles of our rat organoid, to in vitro investigate compartment-dependent activities of human MSC in flat and short bones under experimental osteoporotic challenge. We conclude that our 3D bioartificial construct offers a reliable replica of flat and short bones microanatomy, and promises to help in building a compartment-dependent mechanistic perspective of bone remodeling, including the microtopographic dysregulation of osteoporosis.
Collapse
Affiliation(s)
- Roberto Toni
- ISSMC, CNR, Faenza, Italy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center-Tufts University School of Medicine, Boston, Massachusetts, USA
- Academy of Sciences of the Institute of Bologna, Section IV-Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery-DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine-BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery-DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine-BIOMED, University of Parma, Parma, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Remaggi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| | - Giulia Spaletta
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Enrico Quarantini
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Marco Quarantini
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Ravanetti
- Department of Veterinary Medical Sciences, Section of Anatomy, University of Parma, Parma, Italy
| | | | | |
Collapse
|
3
|
Hogan KJ, Öztatlı H, Perez MR, Si S, Umurhan R, Jui E, Wang Z, Jiang EY, Han SR, Diba M, Jane Grande-Allen K, Garipcan B, Mikos AG. Development of photoreactive demineralized bone matrix 3D printing colloidal inks for bone tissue engineering. Regen Biomater 2023; 10:rbad090. [PMID: 37954896 PMCID: PMC10634525 DOI: 10.1093/rb/rbad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/14/2023] Open
Abstract
Demineralized bone matrix (DBM) has been widely used clinically for dental, craniofacial and skeletal bone repair, as an osteoinductive and osteoconductive material. 3D printing (3DP) enables the creation of bone tissue engineering scaffolds with complex geometries and porosity. Photoreactive methacryloylated gelatin nanoparticles (GNP-MAs) 3DP inks have been developed, which display gel-like behavior for high print fidelity and are capable of post-printing photocrosslinking for control of scaffold swelling and degradation. Here, novel DBM nanoparticles (DBM-NPs, ∼400 nm) were fabricated and characterized prior to incorporation in 3DP inks. The objectives of this study were to determine how these DBM-NPs would influence the printability of composite colloidal 3DP inks, assess the impact of ultraviolet (UV) crosslinking on 3DP scaffold swelling and degradation and evaluate the osteogenic potential of DBM-NP-containing composite colloidal scaffolds. The addition of methacryloylated DBM-NPs (DBM-NP-MAs) to composite colloidal inks (100:0, 95:5 and 75:25 GNP-MA:DBM-NP-MA) did not significantly impact the rheological properties associated with printability, such as viscosity and shear recovery or photocrosslinking. UV crosslinking with a UV dosage of 3 J/cm2 directly impacted the rate of 3DP scaffold swelling for all GNP-MA:DBM-NP-MA ratios with an ∼40% greater increase in scaffold area and pore area in uncrosslinked versus photocrosslinked scaffolds over 21 days in phosphate-buffered saline (PBS). Likewise, degradation (hydrolytic and enzymatic) over 21 days for all DBM-NP-MA content groups was significantly decreased, ∼45% less in PBS and collagenase-containing PBS, in UV-crosslinked versus uncrosslinked groups. The incorporation of DBM-NP-MAs into scaffolds decreased mass loss compared to GNP-MA-only scaffolds during collagenase degradation. An in vitro osteogenic study with bone marrow-derived mesenchymal stem cells demonstrated osteoconductive properties of 3DP scaffolds for the DBM-NP-MA contents examined. The creation of photoreactive DBM-NP-MAs and their application in 3DP provide a platform for the development of ECM-derived colloidal materials and tailored control of biochemical cue presentation with broad tissue engineering applications.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
- Baylor College of Medicine Medical Scientist Training Program, Houston, TX 77030, USA
| | - Hayriye Öztatlı
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, 34684, Turkey
| | - Marissa R Perez
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Sophia Si
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Reyhan Umurhan
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Elysa Jui
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Ziwen Wang
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Sa R Han
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Mani Diba
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| | - Bora Garipcan
- Institute of Biomedical Engineering, Boğaziçi University, İstanbul, 34684, Turkey
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, MS-142, 6500 Main Street, Houston, TX 77030, USA
| |
Collapse
|
4
|
Liu J, Chen F, Song D, Zhang Q, Li P, Ci Z, Zhang W, Zhou G. Construction of three-dimensional, homogeneous regenerative cartilage tissue based on the ECG-DBM complex. Front Bioeng Biotechnol 2023; 11:1252790. [PMID: 37818235 PMCID: PMC10561249 DOI: 10.3389/fbioe.2023.1252790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction: The feasibility of using a steel decalcified bone matrix (DBM)-reinforced concrete engineered cartilage gel (ECG) model concept for in vivo cartilage regeneration has been demonstrated in preliminary experiments. However, the regenerated cartilage tissue contained an immature part in the center. The present study aimed to achieve more homogeneous regenerated cartilage based on the same model concept. Methods: For this, we optimized the culture conditions for the engineered cartilage gel-decalcified bone matrix (ECG-DBM) complex based on the previous model and systematically compared the in vitro chondrogenic abilities of ECG in the cartilage slice and ECG-DBM complex states. We then compared the in vivo cartilage regeneration effects of the ECG-DBM complex with those of an equivalent volume of ECG and an equivalent ECG content. Results and discussion: Significant increases in the DNA content and cartilage-specific matrix content were observed for the ECG-DBM complex compared with the ECG cartilage slice, suggesting that the DBM scaffold significantly improved the quality of ECG-derived cartilage regeneration in vitro. In the in vivo experiments, high-quality cartilage tissue was regenerated in all groups at 8 weeks, and the regenerated cartilage exhibited typical cartilage lacunae and cartilage-specific extracellular matrix deposition. Quantitative analysis revealed a higher chondrogenic efficiency in the ECG-DBM group. Specifically, the ECG-DBM complex achieved more homogeneous and stable regenerated cartilage than an equivalent volume of ECG and more mature regenerated cartilage than an equivalent ECG content. Compared with ECG overall, ECG-DBM had a more controllable shape, good morphology retention, moderate mechanical strength, and high cartilage regeneration efficiency. Further evaluation of the ECG-DBM complex after in vitro culture for 7 and 14 days confirmed that an extended in vitro preculture facilitated more homogeneous cartilage regeneration.
Collapse
Affiliation(s)
- Jingwen Liu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Feifan Chen
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daiying Song
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qixin Zhang
- Department of Geratology, Weifang People’s Hospital, Weifang, China
| | - Peizhe Li
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ci
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine Shanghai, Shanghai, China
| | - Wei Zhang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Stogov MV, Dyuryagina OV, Silant'eva TA, Shipitsyna IV, Kireeva EA, Stepanov MA. Evaluation of Biocompatibility of New Osteoplastic Xenomaterials Containing Zoledronic Acid and Strontium Ranelate. TRAUMATOLOGY AND ORTHOPEDICS OF RUSSIA 2023; 30:57-73. [DOI: 10.17816/2311-2905-2035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Background. The problem of improving the functional characteristics of implanted devices and materials used in traumatology and orthopedics is a topical issue.
Aim of the study to study biocompatibility of bovine bone matrix xenomaterials modified by zoledronic acid and strontium ranelate when implanted into the bone defect cavity.
Methods. The study was performed on 24 male rabbits of the Soviet Chinchilla breed. Test blocks of bone matrix were implanted into the cavity of bone defects of the femur. Group 1 animals (n = 8, control group) were implanted with bone xenogenic material (Bio-Ost osteoplastic matrix). Group 2 animals (n = 8) were implanted with bone xenogenic material impregnated with zoledronic acid. Group 3 animals (n = 8) were implanted with bone xenogeneic material impregnated with strontium ranelate. Supercritical fluid extraction technology was used to purify the material and impregnate it with zoledronic acid and strontium ranelate. Radiological, pathomorphological, histological and laboratory (hematology and blood biochemistry) diagnostic methods were used to assess biocompatibility. Follow-up period was 182 days after implantation.
Results. It was found out that on the 182nd day after implantation the median area of the newly-formed bone tissue in the defect modeling area in Group 1 was 79%, in Group 2 0%, in Group 3 67%. In Group 2 the maximum area by this period was filled with connective tissue 77%. Median relative area of implanted material fragments in Group 1 was 4%, in Group 2 23%, in Group 3 15%. No infection or material rejection was observed in animals of all groups. There were no signs of intoxication or prolonged systemic inflammatory reaction. Laboratory parameters did not change significantly over time. One animal in each group experienced one-time increase in C-reactive protein level against the background of leukocytosis. Two animals in Group 1 had a slight migration of implanted material under the skin, one animal developed arthritis of the knee joint.
Conclusion. Osteoplastic materials based on bovine bone xenomatrix and filled with zoledronic acid and strontium ranelate have acceptable values of biocompatibility including their safety profile.
Collapse
|
6
|
Barui S, Ghosh D, Laurencin CT. Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives. Regen Biomater 2022; 10:rbac109. [PMID: 36683736 PMCID: PMC9845524 DOI: 10.1093/rb/rbac109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Despite quantum leaps, the biomimetic regeneration of cartilage and osteochondral regeneration remains a major challenge, owing to the complex and hierarchical nature of compositional, structural and functional properties. In this review, an account of the prevailing challenges in biomimicking the gradients in porous microstructure, cells and extracellular matrix (ECM) orientation is presented. Further, the spatial arrangement of the cues in inducing vascularization in the subchondral bone region while maintaining the avascular nature of the adjacent cartilage layer is highlighted. With rapid advancement in biomaterials science, biofabrication tools and strategies, the state-of-the-art in osteochondral regeneration since the last decade has expansively elaborated. This includes conventional and additive manufacturing of synthetic/natural/ECM-based biomaterials, tissue-specific/mesenchymal/progenitor cells, growth factors and/or signaling biomolecules. Beyond the laboratory-based research and development, the underlying challenges in translational research are also provided in a dedicated section. A new generation of biomaterial-based acellular scaffold systems with uncompromised biocompatibility and osteochondral regenerative capability is necessary to bridge the clinical demand and commercial supply. Encompassing the basic elements of osteochondral research, this review is believed to serve as a standalone guide for early career researchers, in expanding the research horizon to improve the quality of life of osteoarthritic patients affordably.
Collapse
Affiliation(s)
- Srimanta Barui
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debolina Ghosh
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
7
|
Kara A, Distler T, Polley C, Schneidereit D, Seitz H, Friedrich O, Tihminlioglu F, Boccaccini AR. 3D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: Fabrication, characterization and cytocompatibility study. Mater Today Bio 2022; 15:100309. [PMID: 35757025 PMCID: PMC9213825 DOI: 10.1016/j.mtbio.2022.100309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Three-dimensional (3D) printing technology enables the design of personalized scaffolds with tunable pore size and composition. Combining decellularization and 3D printing techniques provides the opportunity to fabricate scaffolds with high potential to mimic native tissue. The aim of this study is to produce novel decellularized bone extracellular matrix (dbECM)-reinforced composite-scaffold that can be used as a biomaterial for bone tissue engineering. Decellularized bone particles (dbPTs, ∼100 μm diameter) were obtained from rabbit femur and used as a reinforcement agent by mixing with gelatin (GEL) in different concentrations. 3D scaffolds were fabricated by using an extrusion-based bioprinter and crosslinking with microbial transglutaminase (mTG) enzyme, followed by freeze-drying to obtain porous structures. Fabricated 3D scaffolds were characterized morphologically, mechanically, and chemically. Furthermore, MC3T3-E1 mouse pre-osteoblast cells were seeded on the dbPTs reinforced GEL scaffolds (GEL/dbPTs) and cultured for 21 days to assess cytocompatibility and cell attachment. We demonstrate the 3D-printability of dbPTs-reinforced GEL hydrogels and the achievement of homogenous distribution of the dbPTs in the whole scaffold structure, as well as bioactivity and cytocompatibility of GEL/dbPTs scaffolds. It was shown that Young's modulus and degradation rate of scaffolds were enhanced with increasing dbPTs content. Multiphoton microscopy imaging displayed the interaction of cells with dbPTs, indicating attachment and proliferation of cells around the particles as well as into the GEL-particle hydrogels. Our results demonstrate that GEL/dbPTs hydrogel formulations have potential for bone tissue engineering.
Collapse
Affiliation(s)
- Aylin Kara
- İzmir Institute of Technology, Department of Bioengineering, İzmir, 35433, Turkey
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Thomas Distler
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Christian Polley
- Microfluidics, Department of Mechanical Engineering, University of Rostock, Rostock, 18059, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91052, Germany
| | - Hermann Seitz
- Microfluidics, Department of Mechanical Engineering, University of Rostock, Rostock, 18059, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91052, Germany
| | - Funda Tihminlioglu
- İzmir Institute of Technology, Department of Chemical Engineering, İzmir, 35433, Turkey
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91058, Germany
| |
Collapse
|
8
|
Yao CH, Yang BY, Li YCE. Remodeling Effects of the Combination of GGT Scaffolds, Percutaneous Electrical Stimulation, and Acupuncture on Large Bone Defects in Rats. Front Bioeng Biotechnol 2022; 10:832808. [PMID: 35295647 PMCID: PMC8919371 DOI: 10.3389/fbioe.2022.832808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
The regeneration defect of bone is a long-term physiological process after bone injuries. To accelerate the bone remodeling process, the combination of chemical and physical stimulations provides an efficient strategy to allow maturation and to functionalize osteoclasts and osteoblasts. This study aims to investigate the dual effects of a tricalcium phosphate (TCP)-based gelatin scaffold (GGT) in combination with electroacupuncture stimulation on the activation of osteoclasts and osteoblasts, as well as new bone regrowth in vitro and in vivo. We demonstrated that electrical stimulation changes the pH of a culture medium and activates osteoblasts and osteoclasts in an in vitro co-culture system. Furthermore, we showed that electroacupuncture stimulation can enhance osteogenesis and new bone regrowth in vivo and can upregulate the mechanism among parathyroid hormone intact (PTH-i), calcium, osteoclasts, and osteoblasts in the bone-defected rats. Those results showed the potential interest to combine the electroacupuncture technique with GGT scaffolds to improve bone remodeling after injury.
Collapse
Affiliation(s)
- Chun-Hsu Yao
- School of Chinese Medicine, College of Chinese Medicine, Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.,Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | - Bo-Yin Yang
- School of Chinese Medicine, College of Chinese Medicine, Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| |
Collapse
|
9
|
Rizzo MI, Tomao L, Tedesco S, Cajozzo M, Esposito M, De Stefanis C, Ferranti AM, Mezzogori D, Palmieri A, Pozzato G, Algeri M, Locatelli F, Leone L, Zama M. Engineered mucoperiosteal scaffold for cleft palate regeneration towards the non-immunogenic transplantation. Sci Rep 2021; 11:14570. [PMID: 34272436 PMCID: PMC8285425 DOI: 10.1038/s41598-021-93951-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Cleft lip and palate (CL/P) is the most prevalent craniofacial birth defect in humans. None of the surgical procedures currently used for CL/P repair lead to definitive correction of hard palate bone interruption. Advances in tissue engineering and regenerative medicine aim to develop new strategies to restore palatal bone interruption by using tissue or organ-decellularized bioscaffolds seeded with host cells. Aim of this study was to set up a new natural scaffold deriving from a decellularized porcine mucoperiosteum, engineered by an innovative micro-perforation procedure based on Quantum Molecular Resonance (QMR) and then subjected to in vitro recellularization with human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Our results demonstrated the efficiency of decellularization treatment gaining a natural, non-immunogenic scaffold with preserved collagen microenvironment that displays a favorable support to hMSC engraftment, spreading and differentiation. Ultrastructural analysis showed that the micro-perforation procedure preserved the collagen mesh, increasing the osteoinductive potential for mesenchymal precursor cells. In conclusion, we developed a novel tissue engineering protocol to obtain a non-immunogenic mucoperiosteal scaffold suitable for allogenic transplantation and CL/P repair. The innovative micro-perforation procedure improving hMSC osteogenic differentiation potentially impacts for enhanced palatal bone regeneration leading to future clinical applications in humans.
Collapse
Affiliation(s)
- M I Rizzo
- Plastic and Maxillofacial Surgery Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - L Tomao
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Tedesco
- Telea Biotech e Telea Electronic Engineering, Sandrigo, VI, Italy
| | - M Cajozzo
- Plastic and Maxillofacial Surgery Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M Esposito
- Plastic and Maxillofacial Surgery Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C De Stefanis
- Research Laboratories, Histology Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A M Ferranti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - D Mezzogori
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Palmieri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, National Institute of Health, Rome, Italy
| | - G Pozzato
- Telea Biotech e Telea Electronic Engineering, Sandrigo, VI, Italy
| | - M Algeri
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Locatelli
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Gynecology/Obstetrics & Pediatrics, Sapienza University of Rome, Rome, Italy
| | - L Leone
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy. .,Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - M Zama
- Plastic and Maxillofacial Surgery Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Cao R, Zhan A, Ci Z, Wang C, She Y, Xu Y, Xiao K, Xia H, Shen L, Meng D, Chen C. A Biomimetic Biphasic Scaffold Consisting of Decellularized Cartilage and Decalcified Bone Matrixes for Osteochondral Defect Repair. Front Cell Dev Biol 2021; 9:639006. [PMID: 33681223 PMCID: PMC7933472 DOI: 10.3389/fcell.2021.639006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 11/24/2022] Open
Abstract
It is challenging to develop a biphasic scaffold with biomimetic compositional, structural, and functional properties to achieve concomitant repair of both superficial cartilage and subchondral bone in osteochondral defects (OCDs). This study developed a biomimsubchondraletic biphasic scaffold for OCD repair via an iterative layered lyophilization technique that controlled the composition, substrate stiffness, and pore size in each phase of the scaffold. The biphasic scaffold consisted of a superficial decellularized cartilage matrix (DCM) and underlying decalcified bone matrix (DBM) with distinct but seamlessly integrated phases that mimicked the composition and structure of osteochondral tissue, in which the DCM phase had relative low stiffness and small pores (approximately 134 μm) and the DBM phase had relative higher stiffness and larger pores (approximately 336 μm). In vitro results indicated that the biphasic scaffold was biocompatible for bone morrow stem cells (BMSCs) adhesion and proliferation, and the superficial DCM phase promoted chondrogenic differentiation of BMSCs, as indicated by the up-regulation of cartilage-specific gene expression (ACAN, Collagen II, and SOX9) and sGAG secretion; whereas the DBM phase was inducive for osteogenic differentiation of BMSCs, as indicated by the up-regulation of bone-specific gene expression (Collagen I, OCN, and RUNX2) and ALP deposition. Furthermore, compared with the untreated control group, the biphasic scaffold significantly enhanced concomitant repair of superficial cartilage and underlying subchondral bone in a rabbit OCD model, as evidenced by the ICRS macroscopic and O’Driscoll histological assessments. Our results demonstrate that the biomimetic biphasic scaffold has a good osteochondral repair effect.
Collapse
Affiliation(s)
- Runfeng Cao
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Anqi Zhan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,Research Institute of Plastic Surgery, Weifang Medical College, Shandong, China
| | - Zheng Ci
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,Research Institute of Plastic Surgery, Weifang Medical College, Shandong, China
| | - Cheng Wang
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaiyan Xiao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Huitang Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,Research Institute of Plastic Surgery, Weifang Medical College, Shandong, China
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Depeng Meng
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Ercal P, Pekozer GG. A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:61-85. [PMID: 32185698 DOI: 10.1007/5584_2020_505] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone defects due to trauma or diseases still pose a clinical challenge to be resolved in the current tissue engineering approaches. As an alternative to traditional methods to restore bone defects, such as autografts, bone tissue engineering aims to achieve new bone formation via novel biomaterials used in combination with multipotent stem cells and bioactive molecules. Mesenchymal stem cells (MSCs) can be successfully isolated from various dental tissues at different stages of development including dental pulp, apical papilla, dental follicle, tooth germ, deciduous teeth, periodontal ligament and gingiva. A wide range of biomaterials including polymers, ceramics and composites have been investigated for their potential as an ideal bone scaffold material. This article reviews the properties and the manufacturing methods of biomaterials used in bone tissue engineering, and provides an overview of bone tissue regeneration approaches of scaffold and dental stem cell combinations as well as their limitations.
Collapse
Affiliation(s)
- Pınar Ercal
- Faculty of Dentistry, Department of Oral Surgery, Altinbas University, Istanbul, Turkey.
| | - Gorke Gurel Pekozer
- Faculty of Electrical and Electronics Engineering, Department of Biomedical Engineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
12
|
Dadgar N, Ghiaseddin A, Irani S, Tafti SHA, Soufi-Zomorrod M, Soleimani M. Bioartificial injectable cartilage implants from demineralized bone matrix/PVA and related studies in rabbit animal model. J Biomater Appl 2020; 35:1315-1326. [PMID: 33307942 DOI: 10.1177/0885328220976552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional cartilage tissue engineering needs a substantial, easy to handle scaffold with proper mechanical strength to repair defected area in articular cartilage. In this study, we report the development and characterization of demineralized bone matrix (DBM) in with a poly vinyl alcohol (PVA) to have a proper homogenous injectable scaffold. Injectabiliy of the biodegradable scaffolds, degradation rate, swelling ratio compression and tensile mechanical properties, and viability and proliferation of bone marrow mesenchymal stem cells (BM-MSCs) followed by differentiation of them In-vitro and In-vivo seeded within the scaffold were studied. It demonstrated that the PVA 20% could increase significantly (p < 0.05) the biodegradability of DBM after 720 hours.DBM with 20% of PVA scaffold has significantly higher (p < 0.05) compression and tensile mechanical strength and viscosity. SEM images showed a multilayer of cells on DBM scaffold incorporated with PVA 20%.BM-MSCs on scaffolds, DBM+PVA 20% had a significant growth rate (p < 0.0001) compare to 2D and low concentration of PVA after 21 days of culture. Viability of cells was significantly higher (p < 0.05) on DBM+PVA scaffold compare to DBM. DBM+PVA 20% enhanced cell viability (P < 0.05) compare to DBM scaffold. The PVA presence enhanced chondrogenesis differentiation at the cellular and molecular levels, as evidenced by increased COL II (P < 0.05) and SOX2 upregulation of Chondrogensis-specific genes (p < 0.001). Hyline-like cartilage covered the defect which was confirmed by microscopy and histology assessments. Having considered percentages of PVA with a constant amount of DBM, injectability, compressive mechanical properties, homogeneity of the scaffold, and providing sufficient surface area (12.25 cm2/ml) for cell attachment; 0.35 g/ml of DBM in 20% PVA (w/v) has applicable properties within the ranges of studies which can be proposed for the injectable engineered articular cartilage.
Collapse
Affiliation(s)
- Neda Dadgar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ghiaseddin
- Biomedical Engineering Division, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Masoud Soleimani
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Indications and Results of Sternal Allograft Transplantation: Learning From a Worldwide Experience. Ann Thorac Surg 2020; 112:238-247. [PMID: 33080234 DOI: 10.1016/j.athoracsur.2020.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/24/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Reconstruction of the anterior chest wall defect after sternectomy is a challenge for cardiothoracic surgeons. In 2010, the Padua group published the first case of cadaveric sternum transplantation after sternectomy. This multicenter study reports the clinical indications and early and long-term results of sternal chondral allograft transplantation. METHODS This is a retrospective multicenter study from 7 academic centers. We collected demographic data, surgical indications, technical details, and early postoperative results. The complications, long-term stability, and tolerance of the allografts were also analyzed. RESULTS Between January 2008 and December 2019, 58 patients underwent sternectomy followed by reconstruction using cadaveric-cryopreserved sternochondral allografts. Thirty-two patients were male, median age 63.5 years (interquartile range, 50-72 years). Indications for sternectomy were secondary sternal tumors (n = 13), primary sternal tumors (n = 15), and nonneoplastic disease (n = 30). Thirty patients underwent total sternectomy, 16 lower-body sternectomy, and 12 upper-body manubrium resection. The 30-day mortality was 5%; overall morbidity was 31%. Six early reoperations were necessary because of bleeding (n = 1), titanium plate dislocation (n = 1), and resuture of the skin in the lower part of the incision (n = 4). Overall, 5-year survival was 74%. In all the survived patients, the reconstructions were stable and free from mechanical or infective complications. CONCLUSIONS The main indications for sternal allograft implantation were complex poststernotomy dehiscence followed by primary or secondary tumor involvement of the sternum. The collected results demonstrate that sternochondral allograft transplantation is a safe and effective method in reconstructing the anterior chest wall after sternectomy. Further studies to demonstrate the integration of the bone grafts into the patients' sternal wall will be made.
Collapse
|
14
|
Emami A, Talaei-Khozani T, Tavanafar S, Zareifard N, Azarpira N, Vojdani Z. Synergic effects of decellularized bone matrix, hydroxyapatite, and extracellular vesicles on repairing of the rabbit mandibular bone defect model. J Transl Med 2020; 18:361. [PMID: 32962683 PMCID: PMC7510292 DOI: 10.1186/s12967-020-02525-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Extracellular vesicles (ECV) and bone extracellular matrix (ECM) have beneficial effects on the treatment of some pathological conditions. The purpose of this study was to find the synergic effects of decellularized bone (DB) ECM and ECVs on the repair of rabbit. METHODS The quality of decellularized sheep bones was confirmed by H&E, Hoechst, DNA quantification, immunohistochemistry, histochemical staining, and scanning electron microscopy (SEM). Osteoblast-derived ECVs were evaluated by internalization test, Transmission electron microscopy, Dynamic light scattering, and flow cytometry for CD9, CD63, CD81 markers. The hydrogel containing DB and hydroxyapatite (HA) with or without ECVs was evaluated for osteoblast functions and bone repair both in vitro and in vivo. RESULTS The data indicated ECM preservation after decellularization as well as cell depletion. In vitro assessments revealed that mineralization and alkaline phosphatase activity did not improve after treatment of MG63 cells by ECVs, while in vivo morphomatrical estimations showed synergic effects of ECVs and DB + HA hydrogels on increasing the number of bone-specific cells and vessel and bone area compared to the control, DB + HA and ECV-treated groups. CONCLUSIONS The DB enriched with ECVs can be an ideal scaffold for bone tissue engineering and may provide a suitable niche for bone cell migration and differentiation.
Collapse
Affiliation(s)
- Asrin Emami
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Tavanafar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zareifard
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplantation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Tissue Engineering Lab, Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Ciarrocchi AP, Dell'Amore A, Campisi A, Diodato S, Giunta D, Dolci G, Guidalotti P, Fanti S, Stella F. Long-Term Metabolic Assessment of Cryopreserved Sternal Allograft: A Case Series. Ann Thorac Surg 2020; 111:1059-1063. [PMID: 32745518 DOI: 10.1016/j.athoracsur.2020.05.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Sternal resection and reconstruction with cryopreserved allografts provides a safe alternative to traditional methods of anterior chest wall reconstruction. Despite favorable results, successful integration of the graft sternum has never been demonstrated owing to the invasiveness of bone biopsy. We describe our experience of using 18F-sodium fluoride positron emission tomography/computed tomography scans as a noninvasive method of evaluating graft integration. METHODS Seven patients underwent surgery and radiologic follow-up. Surgical indications were sternal metastases (n = 5) and sternal dehiscence (n = 2). Sternal reconstruction was performed using a cryopreserved cadaveric sternal allograft fixed in place with titanium plates and screws. Follow-up with 18F-sodium fluoride positron emission tomography/computed tomography scans was performed at 1 and 2 years after surgery. RESULTS Three patients underwent total sternectomy. Two underwent partial upper sternectomy involving the manubrium, clavicle (1 patient only), and upper sternal body; and 2 had partial sternectomy of the sternal body and xiphoid process. Focal tracer accumulation occurred at the junctions between native bone and graft bone. The median maximum standardized uptake value at 1 year was 16.8 (range, 11.2 to 37.9; interquartile range, 13.6 to 19.4), and at 2 years it was 10.8 (range, 6.1 to 30.2; interquartile range, 8.9 to 15.1). In 6 cases accumulation was lower at the second scan, whereas in 1 patient the accumulation was higher at the second scan. CONCLUSIONS Sternal reconstruction with cryopreserved allograft is safe and well tolerated. The 18F-sodium fluoride positron emission tomography/computed tomography scans are a useful and promising noninvasive method of demonstrating the metabolic activity of the graft and its incorporation into the host skeleton during follow-up.
Collapse
Affiliation(s)
- Angelo Paolo Ciarrocchi
- Thoracic Surgery Unit, Department of Thoracic Diseases, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Andrea Dell'Amore
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery and Vascular Sciences, Padua University Hospital, University of Padua, Padua, Italy
| | - Alessio Campisi
- Thoracic Surgery Unit, Department of Thoracic Diseases, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| | - Stefania Diodato
- Nuclear Medicine, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Domenica Giunta
- Division of Thoracic Surgery and Lung Transplantation, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS ISMETT, Palermo, Italy
| | - Giampiero Dolci
- Department of Cardiothoracic and Vascular Surgery, University Hospital S. Orsola Malpighi, Bologna, Italy
| | - Pierluigi Guidalotti
- Nuclear Medicine, Department of Hematology and Oncology, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Department of Hematology and Oncology, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Thoracic Diseases, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| |
Collapse
|
16
|
Zhou H, Boys AJ, Harrod JB, Bonassar LJ, Estroff LA. Mineral Distribution Spatially Patterns Bone Marrow Stromal Cell Behavior on Monolithic Bone Scaffolds. Acta Biomater 2020; 112:274-285. [PMID: 32479819 PMCID: PMC7372954 DOI: 10.1016/j.actbio.2020.05.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 11/25/2022]
Abstract
Interfaces between soft tissue and bone are characterized by transitional gradients in composition and structure that mediate substantial changes in mechanical properties. For interfacial tissue engineering, scaffolds with mineral gradients have shown promise in controlling osteogenic behavior of seeded bone marrow stromal cells (bMSCs). Previously, we have demonstrated a 'top-down' method for creating monolithic bone-derived scaffolds with patterned mineral distributions similar to native tissue. In the present work, we evaluated the ability of these scaffolds to pattern osteogenic behavior in bMSCs in basic, osteogenic, and chondrogenic biochemical environments. Immunohistochemical (IHC) and histological stains were used to characterize cellular behavior as a function of local mineral content. Alkaline phosphatase, an early marker of osteogenesis, and osteocalcin, a late marker of osteogenesis, were positively correlated with mineral content in basic, osteogenic, and chondrogenic media. The difference in bMSC behavior between the mineralized and demineralized regions was most pronounced in an basic biochemical environment. In the mineralized regions of the scaffold, osteogenic markers were clearly present as early as 4 days in culture. In osteogenic media, osteogenic behavior was observed across the entire scaffold, whereas in chondrogenic media, there was an overall reduction in osteogenic biomarkers. Overall, these results indicate local mineral content of the scaffold plays a key role in spatially patterning bMSC behavior. Our results can be utilized for the development of interfacial tissue engineered scaffolds and understanding the role of local environment in determining bMSC behavior. STATEMENT OF SIGNIFICANCE: Soft tissue-to-bone interfaces, such as tendon-bone, ligament-bone, and cartilage-bone, are ubiquitous in mammalian musculoskeletal systems. These interfacial tissues have distinct, hierarchically-structured gradients of cellular, biochemical, and materials components. Given the complexity of the biological structures, interfacial tissues present unique challenges for tissue engineering. Here, we demonstrate that material-derived cues can spatially pattern osteogenic behavior in bone marrow stromal cells (bMSCs). Specifically, we observed that when the bMSCs are cultured on bone-derived scaffolds with mineral gradients, cells in contact with higher mineral content display osteogenic behavior at earlier times than those on the unmineralized substrate. The ability to pattern the cellular complexity found in native interfaces while maintaining biologically relevant structures is a key step towards creating engineered tissue interfaces.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jordan B Harrod
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States.
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Kavli Institute for Nanoscale Science at Cornell, Cornell University, Ithaca, New York 14853, United States.
| |
Collapse
|
17
|
Nie Z, Wang X, Ren L, Kang Y. Development of a decellularized porcine bone matrix for potential applications in bone tissue regeneration. Regen Med 2020; 15:1519-1534. [DOI: 10.2217/rme-2019-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: The objectives of this study were to develop a new decellularized bone matrix (DBM) and to investigate its effect on the in vitro cell behavior of human bone marrow-derived mesenchymal stem cells (hMSCs), compared with porous β-tricalcium phosphate (β-TCP) scaffolds. Materials & methods: Triton X-100 and deoxycholate sodium solution, combining DNase I and RNase, were used to decellularize porcine bones. The DBM were then characterized by DNA contents and matrix components. hMSCs were then seeded on the DBM and β-TCP scaffolds to study cell behavior. Results: Results showed that most porcine cells were removed and the matrix components of the DBM were maintained. Cell culture results showed that DBM promoted cell attachment and proliferation of hMSCs but did not significantly promote the gene expression of osteogenic genes, compared with β-TCP scaffolds. Conclusion: DBM has similar function on cell behavior to β-TCP scaffolds that have promising potential in bone tissue regeneration.
Collapse
Affiliation(s)
- Ziyan Nie
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuesong Wang
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Liling Ren
- School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Integrative Biology Program, Department of Biological Science, College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|