1
|
Yağcı A, Daler S, Kaya O. An Innovative Approach: Alleviating Cadmium Toxicity in Grapevine Seedlings Using Smoke Solution Derived from the Burning of Vineyard Pruning Waste. PHYSIOLOGIA PLANTARUM 2024; 176:e14624. [PMID: 39537427 DOI: 10.1111/ppl.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Although plant-derived smoke solutions (SSs) have exhibited growth-promoting properties in various plant species, their potential role in mitigating heavy metal stress, specifically in grapevines, has remained unexplored and unreported. This knowledge gap prompted the present study to evaluate the efficacy of foliar application of SSs derived from vineyard pruning waste at concentrations of 0%, 0.5%, 1%, and 2% in mitigating Cadmium (Cd) phytotoxicity in grape saplings. In our study, cadmium stress was induced by applying 10 mg/kg CdCl2 to the root area of the saplings, in conjunction with fertilizers. Our findings showed that exposure to Cd toxicity impeded the growth of grapevine saplings, adversely affecting shoot and root length, as well as fresh weight. Furthermore, it resulted in a reduction in chlorophyll content, stomatal conductance, and leaf water content while significantly increasing membrane damage and lipid peroxidation. Notably, the application of 0.5% SS enhanced grapevine sapling growth and alleviated Cd stress-induced damage by more effectively regulating physiological and biochemical responses compared to the control and other concentrations. Based on our results, under Cd stress conditions, the application of 0.5% SS effectively increased chlorophyll content, relative water content (RWC), stomatal conductance (1.79 mmol.m-2.sn-1), and total phenolic content (1.89 mg.g-1), whereas it significantly reduced malondialdehyde (MDA) levels and membrane damage (1.35 nmol.g-1). Additionally, it significantly elevated the activities of antioxidant enzymes, including superoxide dismutase (SOD) (2.16 U.mg-1), catalase (CAT) (1.55 U.mg-1), and ascorbate peroxidase (APX) (3.03 U.mg-1). The study demonstrated that plant-derived SS mitigates Cd stress in grapevines by enhancing antioxidative defence mechanisms.
Collapse
Affiliation(s)
- Adem Yağcı
- Department of Horticulture, Faculty of Agriculture, Tokat Gaziosmanpaşa University, Tokat, Türkiye
| | - Selda Daler
- Department of Horticulture, Faculty of Agriculture, Yozgat Bozok University, Yozgat, Türkiye
| | - Ozkan Kaya
- Republic of Türkiye Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, Türkiye
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| |
Collapse
|
2
|
Ghaffari-Bohlouli P, Jafari H, Okoro OV, Alimoradi H, Nie L, Jiang G, Kakkar A, Shavandi A. Gas Therapy: Generating, Delivery, and Biomedical Applications. SMALL METHODS 2024; 8:e2301349. [PMID: 38193272 DOI: 10.1002/smtd.202301349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Oxygen (O2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and hydrogen (H2) with direct effects, and carbon dioxide (CO2) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Houman Alimoradi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
3
|
Ning X, Zhu X, Wang Y, Yang J. Recent advances in carbon monoxide-releasing nanomaterials. Bioact Mater 2024; 37:30-50. [PMID: 38515608 PMCID: PMC10955104 DOI: 10.1016/j.bioactmat.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
As an endogenous signaling molecule, carbon monoxide (CO) has emerged as an increasingly promising option regarding as gas therapy due to its positive pharmacological effects in various diseases. Owing to the gaseous nature and potential toxicity, it is particularly important to modulate the CO release dosages and targeted locations to elucidate the biological mechanisms of CO and facilitate its clinical applications. Based on these, diverse CO-releasing molecules (CORMs) have been developed for controlled release of CO in biological systems. However, practical applications of these CORMs are limited by several disadvantages including low stability, poor solubility, weak releasing controllability, random diffusion, and potential toxicity. In light of rapid developments and diverse advantages of nanomedicine, abundant nanomaterials releasing CO in controlled ways have been developed for therapeutic purposes across various diseases. Due to their nanoscale sizes, diversified compositions and modified surfaces, vast CO-releasing nanomaterials (CORNMs) have been constructed and exhibited controlled CO release in specific locations under various stimuli with better pharmacokinetics and pharmacodynamics. In this review, we present the recent progress in CORNMs according to their compositions. Following a concise introduction to CO therapy, CORMs and CORNMs, the representative research progress of CORNMs constructed from organic nanostructures, hybrid nanomaterials, inorganic nanomaterials, and nanocomposites is elaborated. The basic properties of these CORNMs, such as active components, CO releasing mechanisms, detection methods, and therapeutic applications, are discussed in detail and listed in a table. Finally, we explore and discuss the prospects and challenges associated with utilizing nanomaterials for biological CO release.
Collapse
Affiliation(s)
- Xiaomei Ning
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinghui Yang
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
4
|
Khir NAM, Noh ASM, Long I, Zakaria R, Ismail CAN. Recent progress on anti-nociceptive effects of carbon monoxide releasing molecule-2 (CORM-2). Mol Cell Biochem 2024; 479:539-552. [PMID: 37106243 DOI: 10.1007/s11010-023-04749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
The role of carbon monoxide (CO) has evolved albeit controversial disputes on its toxicity. This biological gasotransmitter participates in the endogenous regulation of neurotransmitters and neuropeptides released in the nervous system. Exogenous CO gas inhalation at a lower concentration has been the subject of investigations, which have revealed its biological homeostatic mechanisms and protective effects against many pathological conditions. This therapeutic procedure of CO is, however, limited due to its immediate release, which favours haemoglobin at a high affinity with the subsequent generation of toxic carboxyhaemoglobin in tissues. In order to address this problem, carbon monoxide releasing molecule-2 (CORM-2) or also known as tricarbonyldichlororuthenium II dimer is developed to liberate a controlled amount of CO in the biological systems. In this review, we examine several potential mechanisms exerted by this therapeutic compound to produce the anti-nociceptive effect that has been demonstrated in previous studies. This review could shed light on the role of CORM-2 to reduce pain, especially in cases of chronic and neuropathic pain.
Collapse
Affiliation(s)
- Nurul Ajilah Mohamed Khir
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
- International Medical School, Management and Science University, 40100, Shah Alam, Selangor, Malaysia
| | - Ain' Sabreena Mohd Noh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Idris Long
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rahimah Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
5
|
Jourdain R, Chivukula VK, Bashur CA. Modeling Gasotransmitter Availability to Brain Capillary Endothelial Cells with Ultrasound-sensitive Microbubbles. Pharm Res 2023; 40:2399-2411. [PMID: 37783924 DOI: 10.1007/s11095-023-03606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Vascular cognitive impairment and dementia results from blood components passing through disrupted blood brain barriers (BBBs). Current treatments can reduce further progress of neuronal damage but do not treat the primary cause. Instead, these treatments typically aim to temporarily disrupt the BBB. Alternatively, this study computationally assessed the feasibility of delivering carbon monoxide (CO) from ultrasound-sensitive microbubbles (MBs) as a strategy to promote BBB repair and integrity. CO can interact with heme-containing compounds within cells and promote cell growth. However, careful dose control is critical for safety and efficacy because CO also binds at high affinity to hemoglobin (Hb). METHODS Ultrasound activation was simulated at the internal carotid artery, and CO released from the resulting MB rupture was tracked along the shortest path to the BBB for several activation times and doses. The CO dose available to brain capillary endothelial cells (BCECs) was predicted by considering hemodynamics, mass transport, and binding kinetics. RESULTS The half-life of CO binding to Hb indicated that CO is available to interact with BCECs for several cardiac cycles. Further, MB and COHb concentrations would not be near toxic levels and free Hb would be available. The axisymmetric model indicated that biologically-relevant CO concentrations will be available to BCECs, and these levels can be sustained with controlled ultrasound activation. A patient-specific geometry shows that while vessel tortuosity provides a heterogeneous response, a relevant CO concentration could still be achieved. CONCLUSIONS This computational study demonstrates feasibility of the CO / MB strategy, and that controlled delivery is important for viability of this strategy.
Collapse
Affiliation(s)
- Rubens Jourdain
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, USA
| | - Venkat Keshav Chivukula
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, USA
| | - Chris A Bashur
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL, USA.
| |
Collapse
|
6
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. Tricarbonyl-Pyrazine-Molybdenum(0) Metal-Organic Frameworks for the Storage and Delivery of Biologically Active Carbon Monoxide. ACS Biomater Sci Eng 2023; 9:1909-1918. [PMID: 36996427 PMCID: PMC10091354 DOI: 10.1021/acsbiomaterials.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Metal-organic frameworks (MOFs) have high potential as nanoplatforms for the storage and delivery of therapeutic gasotransmitters or gas-releasing molecules. The aim of the present study was to open an investigation into the viability of tricarbonyl-pyrazine-molybdenum(0) MOFs as carbon monoxide-releasing materials (CORMAs). A previous investigation found that the reaction of Mo(CO)6 with excess pyrazine (pyz) in a sealed ampoule gave a mixture comprising a major triclinic phase with pyz-occupied hexagonal channels, formulated as fac-Mo(CO)3(pyz)3/2·1/2pyz (Mo-hex), and a minor dense cubic phase, formulated as fac-Mo(CO)3(pyz)3/2 (Mo-cub). In the present work, an open reflux method in toluene has been optimized for the large-scale synthesis of the pure Mo-cub phase. The crystalline solids Mo-hex and Mo-cub were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), FT-IR and FT-Raman spectroscopies, and 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR spectroscopy. The release of CO from the MOFs was studied by the deoxy-myoglobin (deoxy-Mb)/carbonmonoxy-myoglobin (MbCO) UV-vis assay. Mo-hex and Mo-cub release CO upon contact with a physiological buffer in the dark, delivering 0.35 and 0.22 equiv (based on Mo), respectively, after 24 h, with half-lives of 3-4 h. Both materials display high photostability such that the CO-releasing kinetics is not affected by irradiation of the materials with UV light. These materials are attractive as potential CORMAs due to the slow release of a high CO payload. In the solid-state and under open air, Mo-cub underwent almost complete decarbonylation over a period of 4 days, corresponding to a theoretical CO release of 10 mmol per gram of material.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Potential effects of carbon monoxide donor and its nanoparticles on experimentally induced gastric ulcer in rats. Inflammopharmacology 2023; 31:1495-1510. [PMID: 36882659 DOI: 10.1007/s10787-023-01166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
The prevalence of gastric ulcers is increasing worldwide, especially those brought on by non-steroidal anti-inflammatory drugs (NSAIDS), so prevention is extremely crucial. The protective potential of carbon monoxide (CO) in several inflammatory disorders has been clarified. The goal of the current study was to investigate the gastroprotective effect of CO produced by its pharmacological donor (CORM2) and its nanoparticles (NPs) against indomethacin (INDO)-induced ulcers. Investigations on CORM2's dose-dependent effects were also conducted. For induction of gastric ulcer, 100 mg kg-1 of INDO was given orally. Before ulcer induction, CORM2 (5, 10, and 15 mg kg-1), CORM2 nanoparticles (5 mg kg-1), or ranitidine (30 mg kg-1) were given intraperitoneally for 7 days. Ulcer score, gastric acidity, gastric contents of malondialdehyde (MDA), nitric oxide (NO), heme oxygenase-1 (HO-1), and carboxyhemoglobin (COHb) blood content were estimated. Additionally, gene expression of nuclear factor erythroid 2-related factor 2 (NRF2) and immunohistochemical staining of cyclooxygenase-1 (COX-1) as well as cyclooxygenase-2 (COX-2) were analyzed. Results demonstrated a substantial dose-dependent decrease in ulcer score, pro-inflammatory indicators, and oxidative stress markers with CORM2 and its NPs. Furthermore, CORM2 and its NPs markedly increased NRF2, COX-1, and HO-1, but CORM2 NPs outperformed CORM2 in this regard. In conclusion, the CO released by CORM2 can protect against INDO-induced gastric ulcers dose dependently, and the highest used dose had no effect on COHb concentration.
Collapse
|
8
|
Water-Soluble Carbon Monoxide-Releasing Molecules (CORMs). Top Curr Chem (Cham) 2022; 381:3. [PMID: 36515756 DOI: 10.1007/s41061-022-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022]
Abstract
Carbon monoxide-releasing molecules (CORMs) are promising candidates for producing carbon monoxide in the mammalian body for therapeutic purposes. At higher concentrations, CO has a harmful effect on the mammalian organism. However, lower doses at a controlled rate can provide cellular signaling for mandatory pharmacokinetic and pathological activities. To date, exploring the therapeutic implications of CO dose as a prodrug has attracted much attention due to its therapeutic significance. There are two different methods of CO insertion, i.e., indirect and direct exogenous insertion. Indirect exogenous insertion of CO suggests an advantage of reduced toxicity over direct exogenous insertion. For indirect exogenous insertion, researchers are facing the issue of tissue selectivity. To solve this issue, developers have considered the newly produced CORMs. Herein, metal carbonyl complexes (MCCs) are covalently linked with CO molecules to produce different CORMs such as CORM-1, CORM-2, and CORM-3, etc. All these CORMs required exogenous CO insertion to achieve the therapeutic targets at the optimized rate under peculiar conditions or/and triggering. Meanwhile, the metal residue was generated from i-CORMs, which can propagate toxicity. Herein, we explain CO administration, water-soluble CORMs, tissue accumulation, and cytotoxicity of depleted CORMs and the kinetic profile of CO release.
Collapse
|
9
|
Faizan M, Saeed A, Song P, Zhang R, Liu R, Chang Z, Wu L, Zhang M. Fabrication of CdxZn1−xS@VPO (x = 0.2) Nanocomposites for n-Butane Selective Oxidation Toward Maleic Anhydride. Catal Letters 2022. [DOI: 10.1007/s10562-022-04170-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Thomas JM, Kuduvalli SS, T.S A, Sivasankar C. Investigation of the CO releasing ability of azachalcone bound Mn(I) tricarbonyl complexes and their anti‐proliferative properties. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jisha Mary Thomas
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry INDIA
| | - Shreyas S. Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to‐be) University Puducherry India
| | - Anitha T.S
- Mahatma Gandhi Medical Advanced Research Institute, Sri Balaji Vidyapeeth (Deemed to‐be) University Puducherry India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry Pondicherry University (A Central University) Puducherry INDIA
| |
Collapse
|
12
|
Choi HI, Zeb A, Kim MS, Rana I, Khan N, Qureshi OS, Lim CW, Park JS, Gao Z, Maeng HJ, Kim JK. Controlled therapeutic delivery of CO from carbon monoxide-releasing molecules (CORMs). J Control Release 2022; 350:652-667. [PMID: 36063960 DOI: 10.1016/j.jconrel.2022.08.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/06/2023]
Abstract
Carbon monoxide (CO) has been regarded as a "silent killer" for its toxicity toward biological systems. However, a low concentration of endogenously produced CO has shown a number of therapeutic benefits such as anti-inflammatory, anti-proliferative, anti-apoptosis, and cytoprotective activities. Carbon monoxide-releasing molecules (CORMs) have been developed as alternatives to direct CO inhalation, which requires a specialized setting for strict dose control. CORMs are efficient CO donors, with central transition metals (such as ruthenium, iron, cobalt, and manganese) surrounded by CO as a ligand. CORMs can stably store and subsequently release their CO payload in the presence of certain triggers including solvent, light, temperature, and ligand substitution. However, CORMs require appropriate delivery strategies to improve short CO release half-life and target specificity. Herein, we highlighted the therapeutic potential of inhalation and CORMs-delivered CO. The applications of conjugate and nanocarrier systems for controlling CO release and improving therapeutic efficacy of CORMs are also described in detail. The review concludes with some of the hurdles that limit clinical translation of CORMs. Keeping in mind the tremendous potential and growing interest in CORMs, this review would be helpful for designing controlled CO release systems for clinical applications.
Collapse
Affiliation(s)
- Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Alam Zeb
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, Republic of Korea; Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Min-Su Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Isra Rana
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Omer Salman Qureshi
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College University, Lahore, Pakistan
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy, Institute of Drug Research and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea.
| |
Collapse
|
13
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Activation of Carbon Dioxide by 9-Carbene-9-borafluorene Monoanion: Carbon Monoxide Releasing Transformation of Trioxaborinanone to Luminescent Dioxaborinanone. J Am Chem Soc 2022; 144:16276-16281. [PMID: 36037435 DOI: 10.1021/jacs.2c06845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The first structurally characterized example of a trioxaborinanone (2) is produced by the reaction of a 9-carbene-9-borafluorene monoanion and carbon dioxide. When compound 2 is heated or irradiated with UV light, carbon monoxide (CO) is released, and a luminescent dioxaborinanone (3) is formed. Notably, carbon monoxide releasing molecules (CORMs) are of interest for their ability to deliver a specific amount of CO. Due to the turn-on fluorescence observed as a result of the conversion to 3, CORM 2 serves as a means to optically observe CO loss "by eye" under thermal or photochemical conditions.
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, 409 McCormick Road, Charlottesville, Virginia 22904, United States
| |
Collapse
|
14
|
Faizan M, Li H, Liu Y, Li K, Wei S, Zhang R, Liu R. Copper-based deep eutectic solvents (Cu-DES) assisted the VPO catalyst as a structural and electronic promoter for n-butane selective oxidation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
15
|
Ibrahim M, Nawaz S, Iqbal K, Rehman S, Ullah R, Nawaz G, Almeer R, Sayed AA, Peluso I. Plant-Derived Smoke Solution Alleviates Cellular Oxidative Stress Caused by Arsenic and Mercury by Modulating the Cellular Antioxidative Defense System in Wheat. PLANTS 2022; 11:plants11101379. [PMID: 35631804 PMCID: PMC9143333 DOI: 10.3390/plants11101379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
Heavy metal stress is a significant factor in diminishing crop yield. Plant-derived smoke (PDS) has been used as a growth promoter and abiotic stress alleviator for the last two decades. Although the roles of PDS have been determined in various plants, its role in ameliorating heavy metal stress in wheat has not been reported so far. Therefore, the present work was conducted to investigate the effect of smoke solution extracted from a wild lemongrass Cymbopogon jwarancusa (C. jwarncusa) on physiological and biochemical features of wheat under arsenic (As) and mercury (Hg) stress. The results showed that higher concentrations of As and Hg pose inhibitory effects on wheat seed germination and seedling growth, including shoot/root length and shoot/root fresh weight. Photosynthetic pigments, such as chlorophyll a and b and carotenoids, were significantly decreased under As and Hg stress. Importantly, the levels of H2O2, lipid peroxidation, and TBARS were increased in wheat seedlings. The activity of antioxidant enzymes, such as CAT, was decreased by As and Hg stress, while the levels of SOD, POD, and APX antioxidant enzymes were increased in root and shoot. Interestingly, the application of PDS (2000 ppm), individually or in combination with either As or Hg stress, enhanced wheat seed germination rate, shoot/root length, and shoot/root fresh weight. However, the levels of H2O2, lipid peroxidation, and TBARS were decreased. Similarly, the levels of SOD, POD, and APX were decreased by PDS under As and Hg stress, while the level of CAT was enhanced by PDS under As and Hg stress. Interestingly, the levels of chlorophyll a and b, and total carotenoids were increased with the application of PDS under As and Hg stress. It is concluded that PDS has the capability to alleviate the phytotoxic effects of As and Hg stress in wheat by modulating the antioxidative defense system and could be an economical solution to reduce the heavy metal stress in crops.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.I.); (S.N.); (K.I.)
| | - Sadam Nawaz
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.I.); (S.N.); (K.I.)
| | - Khalid Iqbal
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.I.); (S.N.); (K.I.)
| | - Shafiq Rehman
- Department of Biology, University of Haripur, Haripur 22620, Pakistan;
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ghazala Nawaz
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan; (M.I.); (S.N.); (K.I.)
- Correspondence:
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00178 Rome, Italy;
| |
Collapse
|
16
|
Carbon monoxide-releasing molecule-2 ameliorates postresuscitation myocardial dysfunction in rat via mitochondrial-mediated apoptosis pathway and the regulation of mitochondrial dynamics. Eur J Pharmacol 2022; 927:175038. [DOI: 10.1016/j.ejphar.2022.175038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022]
|
17
|
Cevik Eren M, Eren A, Dartar S, Tütüncü BB, Emrullahoglu M. A Cyclopalladated BODIPY Construct as a Fluorescent Probe for Carbon Monoxide (CO). Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Merve Cevik Eren
- Izmir Institute of Technology: Izmir Yuksek Teknoloji Enstitusu Chemistry TURKEY
| | - Ahmet Eren
- Izmir Institute of Technology: Izmir Yuksek Teknoloji Enstitusu Chemistry TURKEY
| | - Suay Dartar
- Izmir Institute of Technology: Izmir Yuksek Teknoloji Enstitusu Chemistry TURKEY
| | - Büşra Buse Tütüncü
- Izmir Institute of Technology: Izmir Yuksek Teknoloji Enstitusu Chemistry TURKEY
| | | |
Collapse
|
18
|
Dual Nature Cupper-Based Ionic Liquid-Assisted n-Butane Selective Oxidation with a Vanadium Phosphorus Oxide Catalyst. Catal Letters 2022. [DOI: 10.1007/s10562-022-03962-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Mancuso C. The brain heme oxygenase/biliverdin reductase system as a target in drug research and development. Expert Opin Ther Targets 2022; 26:361-374. [PMID: 35285395 DOI: 10.1080/14728222.2022.2052848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The heme oxygenase/biliverdin reductase (HO/BVR) system is involved in heme metabolism. The inducible isoform of HO (HO-1) and BVR both exert cytoprotective effects by enhancing cell stress response. In this context, some xenobiotics, which target HO-1, including herbal products, behave as neuroprotectants in several experimental models of neurodegeneration. Despite this, no drug having either HO-1 or BVR as a main target is currently available. AREAS COVERED After a description of the brain HO/BVR system, the paper analyzes the main classes of drugs acting on the nervous system, with HO as second-level target, and their neuroprotective potential. Finally, the difficulties that exist for the development of drugs acting on HO/BVR and the possible ways to overcome these hurdles are examined. EXPERT OPINION Although the limited clinical evidence has restricted the translational research on the HO/BVR system, mainly because of the dual nature of its by-products, there has been growing interest in the therapeutic potential of these enzymes. Scientists should boost the translational research on the HO/BVR system which could be supported by the significant evidence provided by preclinical studies.
Collapse
Affiliation(s)
- Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
20
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Abstract
Metal complexes have been widely used for applications in the chemical and physical sciences due to their unique electronic and stereochemical properties. For decades the use of metal complexes for medicinal applications has been postulated and demonstrated. The distinct characteristics of metal complexes, including their molecular geometries (that are not readily accessed by organic molecules), as well as their ligand exchange, redox, catalytic, and photophysical reactions, give these compounds the potential to interact and react with biomolecules in unique ways and by distinct mechanisms of action. Herein, the potential of metal complexes to act as components bioactive therapeutic compounds is discussed.
Collapse
Affiliation(s)
| | | | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Silva AF, Calhau IB, Gomes AC, Valente AA, Gonçalves IS, Pillinger M. A hafnium-based metal-organic framework for the entrapment of molybdenum hexacarbonyl and the light-responsive release of the gasotransmitter carbon monoxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112053. [PMID: 33947547 DOI: 10.1016/j.msec.2021.112053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
A carbon monoxide-releasing material (CORMA) has been prepared by inclusion of molybdenum hexacarbonyl in a hafnium-based metal-organic framework (MOF) with the UiO-66 architecture. Mo(CO)6 was adsorbed from solution to give supported materials containing 6.0-6.6 wt% Mo. As confirmed by powder X-ray diffraction (PXRD) and SEM coupled with energy dispersive X-ray spectroscopy, neither the crystallinity nor the morphology of the porous host was affected by the loading process. While the general shape of the N2 physisorption isotherms (77 K) did not change significantly after encapsulation of Mo(CO)6, the micropore volume decreased by ca. 20%. Thermogravimetric analysis of the as-prepared materials revealed a weight loss step around 160 °C associated with the decomposition of Mo(CO)6 to subcarbonyl species. Confirmation for the presence of encapsulated Mo(CO)6 complexes was provided by FT-IR and 13C{1H} cross-polarization magic-angle spinning NMR spectroscopies. To test the capability of these materials to behave as CORMAs and transfer CO to heme proteins, the standard myoglobin (Mb) assay was used. While stable in the dark, photoactivation with low-power UV light (365 nm) liberated CO from the encapsulated hexacarbonyl molecules in Mo(6.0)/UiO-66(Hf), leading to a maximum amount of 0.26 mmol CO released per gram of material. Under the simulated physiological conditions of the Mb assay (37 °C, pH 7.4 buffer), minimal leaching of molybdenum occurred, PXRD showed only slight amorphization, and FT-IR spectroscopy confirmed the high chemical stability of the MOF host.
Collapse
Affiliation(s)
- Andreia F Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel B Calhau
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana C Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Anabela A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Isabel S Gonçalves
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Martyn Pillinger
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Alghazwat O, Talebzadeh S, Oyer J, Copik A, Liao Y. Ultrasound responsive carbon monoxide releasing micelle. ULTRASONICS SONOCHEMISTRY 2021; 72:105427. [PMID: 33373872 PMCID: PMC7803797 DOI: 10.1016/j.ultsonch.2020.105427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 05/08/2023]
Abstract
Carbon monoxide (CO), an endogenously produced gasotransmitter, has shown various therapeutic effects in previous studies. In this work, we developed an ultrasound responsive micelle for localized CO delivery. The micelle is composed of a pluronic shell and a core of a CO releasing molecule, CORM-2. The mechanism is based on the ultrasound response of pluronics, and the reaction between CORM-2 and certain biomolecules, e.g. cysteine. The latter allows CO release without significantly breaking the micelles. In a 3.5 mM cysteine solution, the micelles released low level of CO, indicating effective encapsulation of CORM-2. Treatment with a low intensity, non-focused ultrasound led to four times as much CO as the sample without ultrasonication, which is close to that of unencapsulated CORM-2. Significantly reduced proliferation of prostate cancer cells (PC-3) was observed 24 h after the PC-3 cells were treated with the CORM-2 micelles followed by ultrasound activation.
Collapse
Affiliation(s)
| | | | | | | | - Yi Liao
- Florida Institute of Technology, Melbourne, FL, USA.
| |
Collapse
|
24
|
Zhang LM, Zhang DX, Zheng WC, Hu JS, Fu L, Li Y, Xin Y, Wang XP. CORM-3 exerts a neuroprotective effect in a rodent model of traumatic brain injury via the bidirectional gut-brain interactions. Exp Neurol 2021; 341:113683. [PMID: 33711325 DOI: 10.1016/j.expneurol.2021.113683] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) induced the gastrointestinal inflammation that is associated with TBI-related morbidity and mortality. Carbon monoxide-releasing molecule (CORM)-3 is a water-soluble exogenous carbon monoxide that exerts protective effects against inflammation-induced pyroptosis. We investigated the gastrointestinal inflammation in a rodent model of traumatic brain injury (TBI) with subsequent hemorrhagic shock and resuscitation (HSR), as well as effects of CORM-3 using an intestinal injection on both gut and brain. METHODS Following exposure to TBI plus HSR, rats were administrated with CORM-3 (8 mg/kg) through an intestinal injection after resuscitation immediately. The pathological changes and pyroptosis in the gut were measured at 24 h and 30 day post-trauma. We also assessed the intestinal and cortical CO content, as well as IL-1β and IL-18 levels in the serum within 48 h after trauma. We then explored pathological changes in the ventromedial prefrontal cortex (vmPFC) and neurological behavior deficits on 30 day post-trauma. RESULTS After TBI + HSR exposure, CORM-3-treated rats presented significantly decreased pyroptosis, more CO content in the jejunum, and lower IL-1β, IL-18 levels in the serum at 24 h after trauma. Moreover, the rats treated with CORM-3 exerted ameliorated jejunal and vmPFC injury, enhanced learning/memory ability and exploratory activity, improved anxiety-like behaviors than the TBI + HSR-treated rats on 30 day post-trauma. CONCLUSION These experimental data demonstrated and bidirectional gut-brain interactions after TBI, anti-inflammatory effects of CORM-3, which may improve late outcomes after brain injury.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China.
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Chao Zheng
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Jin-Shu Hu
- Clinical Laboratory, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Fu
- Department of Radiodiagnosis, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Xu-Peng Wang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
25
|
Special Issue: Advanced Materials in Drug Release and Drug Delivery Systems. MATERIALS 2021; 14:ma14041042. [PMID: 33672104 PMCID: PMC7926677 DOI: 10.3390/ma14041042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
Abstract
Development of new drug molecules is costly and requires longitudinal, wide-ranging studies; therefore, designing advanced pharmaceutical formulations for existing and well-known drugs seems to be an attractive device for the pharmaceutical industry [...].
Collapse
|
26
|
Bakalarz D, Surmiak M, Yang X, Wójcik D, Korbut E, Śliwowski Z, Ginter G, Buszewicz G, Brzozowski T, Cieszkowski J, Głowacka U, Magierowska K, Pan Z, Wang B, Magierowski M. Organic carbon monoxide prodrug, BW-CO-111, in protection against chemically-induced gastric mucosal damage. Acta Pharm Sin B 2021; 11:456-475. [PMID: 33643824 PMCID: PMC7893125 DOI: 10.1016/j.apsb.2020.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Metal-based carbon monoxide (CO)-releasing molecules have been shown to exert anti-inflammatory and anti-oxidative properties maintaining gastric mucosal integrity. We are interested in further development of metal-free CO-based therapeutics for oral administration. Thus, we examine the protective effect of representative CO prodrug, BW-CO-111, in rat models of gastric damage induced by necrotic ethanol or aspirin, a representative non-steroidal anti-inflammatory drug. Treatment effectiveness was assessed by measuring the microscopic/macroscopic gastric damage area and gastric blood flow by laser flowmetry. Gastric mucosal mRNA and/or protein expressions of HMOX1, HMOX2, nuclear factor erythroid 2-related factor 2, COX1, COX2, iNos, Anxa1 and serum contents of TGFB1, TGFB2, IL1B, IL2, IL4, IL5, IL6, IL10, IL12, tumor necrosis factor α, interferon γ, and GM-CSF were determined. CO content in gastric mucosa was assessed by gas chromatography. Pretreatment with BW-CO-111 (0.1 mg/kg, i.g.) increased gastric mucosal content of CO and reduced gastric lesions area in both models followed by increased GBF. These protective effects of the CO prodrug were supported by changes in expressions of molecular biomarkers. However, because the pathomechanisms of gastric damage differ between topical administration of ethanol and aspirin, the possible protective and anti-inflammatory mechanisms of BW-CO-111 may be somewhat different in these models.
Collapse
Affiliation(s)
- Dominik Bakalarz
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Department of Forensic Toxicology, Institute of Forensic Research, Cracow 31-033, Poland
| | - Marcin Surmiak
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Department of Internal Medicine, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Dagmara Wójcik
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Edyta Korbut
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Grzegorz Ginter
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Lublin 20-093, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Corresponding authors.
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow 31-531, Poland
- Corresponding authors.
| |
Collapse
|
27
|
Zhang HL, Yu YT, Wang Y, Tang Q, Yang SP, Liu JG. Visible light-controlled carbon monoxide delivery combined with the inhibitory activity of histone deacetylases from a manganese complex for an enhanced antitumor therapy. J Inorg Biochem 2021; 216:111354. [PMID: 33454609 DOI: 10.1016/j.jinorgbio.2021.111354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/30/2022]
Abstract
Multifunctional drugs with synergistic effects have been widely developed to enhance the treatment efficiency of various diseases, such as malignant tumors. Herein, a novel bifunctional manganese(I)-based prodrug [MnBr(CO)3(APIPB)] (APIPB = N-(2-aminophen-yl)-4-(1H-imidazo[4,5-f] [1, 10] phenanthrolin-2-yl)benzamide) with inhibitory histone deacetylase (HDAC) activity and light-controlled carbon monoxide (CO) delivery was successfully designed and synthesized. [MnBr(CO)3(APIPB)] readily released CO under visible light irradiation (λ > 400 nm) through which the amount of released CO could be controlled by manipulating light power density and illumination time. In the absence of light irradiation, the cytotoxic effect of [MnBr(CO)3(APIPB)] on cancer cells was greater than that of the commercially available HDAC inhibitor MS-275. Consequently, with a combination of CO delivery and HDAC inhibitory activity, [MnBr(CO)3(APIPB)] showed a remarkably enhanced antitumor effect on HeLa cells (IC50 = 3.2 μM) under visible light irradiation. Therefore, this approach shows potential for the development of medicinal metal complexes for combined antitumor therapies.
Collapse
Affiliation(s)
- Hai-Lin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ya-Ting Yu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yi Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Shi-Ping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
28
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
29
|
Wang M, Yang X, Pan Z, Wang Y, De La Cruz LK, Wang B, Tan C. Towards "CO in a pill": Pharmacokinetic studies of carbon monoxide prodrugs in mice. J Control Release 2020; 327:174-185. [PMID: 32745568 PMCID: PMC7606817 DOI: 10.1016/j.jconrel.2020.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022]
Abstract
Carbon monoxide (CO) is a known endogenous signaling molecule with potential therapeutic indications in treating inflammation, cancer, neuroprotection, and sickle cell disease among many others. One of the hurdles in using CO as a therapeutic agent is the development of pharmaceutically acceptable delivery forms for various indications. Along this line, we have developed organic CO prodrugs that allow for packing this gaseous molecule into a dosage form for the goal of "carbon monoxide in a pill." This should enable non-inhalation administration including oral and intravenous routes. These prodrugs have previously demonstrated efficacy in multiple animal models. To further understand the CO delivery efficiency of these prodrugs in relation to their efficacy, we undertook the first pharmacokinetic studies on these prodrugs. In doing so, we selected five representative prodrugs with different CO release kinetics and examined their pharmacokinetics after administration via oral, intraperitoneal, and intravenous routes. It was found that all three routes were able to elevate systemic CO level with delivery efficiency in the order of intravenous, oral, and intraperitoneal routes. CO prodrugs and their CO-released products were readily cleared from the circulation. CO prodrugs demonstrate promising pharmaceutical properties in terms of oral CO delivery and minimal drug accumulation in the body. This represents the very first study of the interplay among CO release kinetics, CO prodrug clearance, route of administration, and CO delivery efficiency.
Collapse
Affiliation(s)
- Minjia Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Yingzhe Wang
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi School of Pharmacy, University of Mississippi, MS 38677, USA.
| |
Collapse
|
30
|
Lazarus LS, Benninghoff AD, Berreau LM. Development of Triggerable, Trackable, and Targetable Carbon Monoxide Releasing Molecules. Acc Chem Res 2020; 53:2273-2285. [PMID: 32929957 PMCID: PMC7654722 DOI: 10.1021/acs.accounts.0c00402] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbon monoxide (CO) is a gaseous signaling molecule produced in humans via the breakdown of heme in an O2-dependent reaction catalyzed by heme oxygenase enzymes. A long-lived species relative to other signaling molecules (e.g., NO, H2S), CO exerts its physiological effects via binding to low-valent transition metal centers in proteins and enzymes. Studies involving the administration of low doses of CO have shown its potential as a therapeutic agent to produce vasodilation, anti-inflammatory, antiapoptotic, and anticancer effects. In pursuit of developing tools to define better the role and therapeutic potential of CO, carbon monoxide releasing molecules (CORMs) were developed. To date, the vast majority of reported CORMs have been metal carbonyl complexes, with the most well-known being Ru2Cl4(CO)6 (CORM-2), Ru(CO)3Cl(glycinate) (CORM-3), and Mn(CO)4(S2CNMe(CH2CO2H)) (CORM-401). These complexes have been used to probe the effects of CO in hundreds of cell- and animal-based experiments. However, through recent investigations, it has become evident that these reagents exhibit complicated reactivity in biological environments. The interpretation of the effects produced by some of these complexes is obscured by protein binding, such that their formulation is not clear, and by CO leakage and potential redox activity. An additional weakness with regard to CORM-2 and CORM-3 is that these compounds cannot be tracked via fluorescence. Therefore, it is unclear where or when CO release occurs, which confounds the interpretation of experiments using these molecules. To address these weaknesses, our research team has pioneered the development of metal-free CORMs based on structurally tunable extended flavonol or quinolone scaffolds. In addition to being highly controlled, with CO release only occurring upon triggering with visible light (photoCORMs), these CO donors are trackable via fluorescence prior to CO release in cellular environments and can be targeted to specific cellular locations.In the Account, we highlight the development and application of a series of structurally related flavonol photoCORMs that (1) sense characteristics of cellular environments prior to CO release; (2) enable evaluation of the influence of cytosolic versus mitochondrial-localized CO release on cellular bioenergetics; (3) probe the cytotoxicity and anti-inflammatory effects of intracellular versus extracellular CO delivery; and (4) demonstrate that albumin delivery of a photoCORM enables potent anticancer and anti-inflammatory effects. A key advantage of using triggered CO release compounds in these investigations is the ability to examine the effects of the molecular delivery vehicle in the absence and presence of localized CO release, thus providing insight into the independent contributions of CO. Overall, flavonol-based CO delivery molecules offer opportunities for triggerable, trackable, and targetable CO delivery that are unprecedented in terms of previously reported CORMs and, thus, offer significant potential for applications in biological systems.
Collapse
Affiliation(s)
- Livia S Lazarus
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, Utah 84322-4815, United States
| | - Lisa M Berreau
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah 84322-0300, United States
| |
Collapse
|
31
|
Maiti BK. Heme/Hemeoxygenase-1 System Is a Potential Therapeutic Intervention for COVID-19 Patients with Severe Complications. ACS Pharmacol Transl Sci 2020; 3:1032-1034. [PMID: 33073200 DOI: 10.1021/acsptsci.0c00136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is one of the critical stages of COVID-19, leading to lung injury and hemolysis. Dysfunctional hemoglobin (Hb) suffers low-level oxygenation, overloaded iron, and down-regulation of hemeoxygenase-1 (HO-1), representing potential therapeutic interventions. This Viewpoint outlines the Hb-HO-1 system as a host-cell target, and proposes possible therapies, including iron chelation and CO therapies, against COVID-19 with ARDS.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India
| |
Collapse
|
32
|
Water-soluble UV/visible light activated Mn-CO-releasing molecules: Synthesis, structure, CO releasing and biological activities evaluation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Wang XS, Zeng JY, Li MJ, Li QR, Gao F, Zhang XZ. Highly Stable Iron Carbonyl Complex Delivery Nanosystem for Improving Cancer Therapy. ACS NANO 2020; 14:9848-9860. [PMID: 32658459 DOI: 10.1021/acsnano.0c02516] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal carbonyl complexes can readily liberate carbon monoxide (CO) in response to activation stimulus. However, applicability of metal carbonyl complexes is limited because they are unstable under natural ambient conditions of moisture and oxygen. Reported here is the rational design of an iron carbonyl complex delivery nanosystem for the improvement of cancer therapy. We demonstrated that iron pentacarbonyl (Fe(CO)5) can be encapsulated into the cavity of a Au nanocage under an oxygen-free atmosphere and then controllably form iron oxide on the surface of the Au nanocage under aerobic conditions. The formation of iron oxide efficiently avoids the leakage and oxidation of the caged Fe(CO)5. The resulting nanomaterial exhibits excellent safety, biocompatibility, and stability, which can be specifically activated under near-infrared (NIR) irradiation within the tumor environment to generate CO and iron. The released CO causes damage to mitochondria and subsequent initiation of autophagy. More importantly, during autophagy, the nanomaterial that contains iron and iron oxide can accumulate into the autolysosome and result in its destruction. The produced CO and iron show excellent synergistic effects in cancer cells.
Collapse
Affiliation(s)
- Xiao-Shuang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Min-Jie Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Qian-Ru Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
34
|
Rao RN, Panchangam RL, Manickam V, Balamurali MM, Chanda K. Synthesis and Antitumor Activity Evaluation of Cyclometalated
2H‐
Indazole Ruthenium(II) and Iridium(III) Complexes. Chempluschem 2020; 85:1800-1812. [DOI: 10.1002/cplu.202000516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Ramdas Nishanth Rao
- Department of ChemistrySchool of Advanced ScienceVellore Institute of Technology Vellore 632014 India
| | - Rajeeva Lochana Panchangam
- Department of BiosciencesSchool of Biosciences and TechnologyVellore Institute of Technology Vellore 632014 India
| | - Venkatraman Manickam
- Department of BiosciencesSchool of Biosciences and TechnologyVellore Institute of Technology Vellore 632014 India
| | - Musuvathi Motilal Balamurali
- Chemistry DivisionSchool of Advanced SciencesVellore Institute of Technology Chennai Campus Chennai 600127 India
| | - Kaushik Chanda
- Department of ChemistrySchool of Advanced ScienceVellore Institute of Technology Vellore 632014 India
| |
Collapse
|
35
|
Calhau IB, Gomes AC, Bruno SM, Coelho AC, Magalhães CIR, Romão CC, Valente AA, Gonçalves IS, Pillinger M. One‐Pot Intercalation Strategy for the Encapsulation of a CO‐Releasing Organometallic Molecule in a Layered Double Hydroxide. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Isabel B. Calhau
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Ana C. Gomes
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Sofia M. Bruno
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Ana C. Coelho
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República, EAN 2780‐157 Oeiras Portugal
| | - Clara I. R. Magalhães
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Carlos C. Romão
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República, EAN 2780‐157 Oeiras Portugal
| | - Anabela A. Valente
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Isabel S. Gonçalves
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Martyn Pillinger
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| |
Collapse
|
36
|
Cytotoxicity, cellular localization and photophysical properties of Re(I) tricarbonyl complexes bound to cysteine and its derivatives. J Biol Inorg Chem 2020; 25:759-776. [DOI: 10.1007/s00775-020-01798-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/08/2020] [Indexed: 01/23/2023]
|
37
|
McMahon S, Rajagopal A, Amirjalayer S, Halpin Y, Fitzgerald-Hughes D, Buma WJ, Woutersen S, Long C, Pryce MT. Photo-activated CO-release in the amino tungsten Fischer carbene complex, [(CO) 5WC(NC 4H 8)Me], picosecond time resolved infrared spectroscopy, time-dependent density functional theory, and an antimicrobial study. J Inorg Biochem 2020; 208:111071. [PMID: 32434119 DOI: 10.1016/j.jinorgbio.2020.111071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/18/2023]
Abstract
Picosecond time-resolved infrared spectroscopy was used to probe the photo-induced early state dynamics preceding CO loss in the Fischer carbene complex, [(CO)5WC(NC4H8)CH3]. Time-dependent density functional theory calculations were employed to help in understanding the photochemical and photophysical processes leading to CO-loss. Electrochemical initiated CO release was quantified using gas chromatography. The potential of [(CO)5WC(NC4H8)CH3], as an antimicrobial agent under irradiation conditions was studied using a Staphylococcus aureus strain.
Collapse
Affiliation(s)
- Suzanne McMahon
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Ashwene Rajagopal
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland; Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education and Research, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Saeed Amirjalayer
- Physikalisches Institut, Center for Nanotechnology (CeNTech) and Center for Multiscale Theory & Computation (CMTC), Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Yvonne Halpin
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Deirdre Fitzgerald-Hughes
- Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education and Research, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Wybren Jan Buma
- University of Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Sander Woutersen
- University of Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Conor Long
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Mary T Pryce
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
38
|
Ma W, Chen X, Fu L, Zhu J, Fan M, Chen J, Yang C, Yang G, Wu L, Mao G, Yang X, Mou X, Gu Z, Cai X. Ultra-efficient Antibacterial System Based on Photodynamic Therapy and CO Gas Therapy for Synergistic Antibacterial and Ablation Biofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22479-22491. [PMID: 32329344 DOI: 10.1021/acsami.0c01967] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, with the emergence of various kinds of drug-resistant bacteria, existing antibiotics have become inefficient in killing these bacteria, and the formation of biofilms has further weakened the therapeutic effect. More problematically, the massive use and abuse of antibiotics have caused severe side effects. Thus, the development of ultra-efficient and safe antibacterial systems is urgently needed. Herein, a photodynamic therapy (PDT)-driven CO-controlled delivery system (Ce6&CO@FADP) is developed for synergistic antibacterial and ablation biofilms. Ce6&CO@FADP is constructed using a fluorinated amphiphilic dendritic peptide (FADP) and physically loaded with Ce6 and CORM-401. After efficiently entering the bacteria, Ce6&CO@FADP can rapidly release CO intracellularly by the massive consumption of the H2O2 generated during the PDT process, without affecting the generation of singlet oxygen (1O2). As such, the combination of CO and 1O2 exerts notable synergistic antibacterial and biofilm ablation effects both in vitro and in vivo (including subcutaneous bacterial infection and biofilm catheter models) experiments. More importantly, all biosafety assessments suggest the good biocompatibility of Ce6&CO@FADP. Together, these results reveal that Ce6&CO@FADP is an efficient and safe antibacterial system, which has essential application prospects for the treatment of bacterial infections and ablation of biofilms in vivo.
Collapse
Affiliation(s)
- Wei Ma
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), No. 158 Shangtang Road, 310014 Hangzhou, Zhejiang Province, P. R. China
| | - Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), No. 158 Shangtang Road, 310014 Hangzhou, Zhejiang Province, P. R. China
| | - Jingwu Zhu
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Mengni Fan
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Junpeng Chen
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Chao Yang
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Guangzhen Yang
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Lihuang Wu
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Genxiang Mao
- Department of Geriatrics, Zhejiang Hospital, Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, No. 1229 Gudun Road, 310013 Hangzhou, Zhejiang Province, P. R. China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), No. 158 Shangtang Road, 310014 Hangzhou, Zhejiang Province, P. R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), No. 158 Shangtang Road, 310014 Hangzhou, Zhejiang Province, P. R. China
| | - Zhongwei Gu
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| | - Xiaojun Cai
- College of Materials Science and Engineering, Nanjing Tech University, 30 Puzhu Road, 211816 Nanjing, P. R. China
| |
Collapse
|
39
|
Pinto MN, Mascharak PK. Light-assisted and remote delivery of carbon monoxide to malignant cells and tissues: Photochemotherapy in the spotlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100341] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Faizan M, Niazi KUK, Muhammad N, Hu Y, Wang Y, Lin D, Liu Y, Zhang W, Gao Z. The Intercalation of CORM-2 with Pharmaceutical Clay Montmorillonite (MMT) Aids for Therapeutic Carbon Monoxide Release. Int J Mol Sci 2019; 20:E3453. [PMID: 31337099 PMCID: PMC6679092 DOI: 10.3390/ijms20143453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 01/11/2023] Open
Abstract
The pharmaceutical clay montmorillonite (MMT) is, for the first time, explored as a carbon monoxide-releasing material (CORMat). MMT consists of silicate double layered structure; its exfoliation feature intercalate the CORM-2 [RuCl(μ-Cl)(CO)3]2 inside the layers to suppress the toxicity of organometallic segment. The infrared spectroscopy (IR) confirmed the existence of ruthenium coordinated carbonyl ligand in MMT layers. The energy-dispersive X-ray spectroscopy (EDX) analysis showed that ruthenium element in this material was about 5%. The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images showed that the layer-structure of MMT has been maintained after loading the ruthenium carbonyl segment. Moreover, the layers have been stretched out, which was confirmed by X-ray diffraction (XRD) analysis. Thermogravimetric (TG) curves with huge weight loss around 100-200 °C were attributed to the CO hot-release of ruthenium carbonyl as well as the loss of the adsorbed solvent molecules and the water molecules between the layers. The CO-liberating properties have been assessed through myoglobin assay. The horse myoglobin test showed that the material could be hydrolyzed to slowly release carbon monoxide in physiological environments. The half-life of CO release was much longer than that of CORM-3, and it has an excellent environmental tolerance and slow release effect.
Collapse
Affiliation(s)
- Muhammad Faizan
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | | | - Niaz Muhammad
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yongxia Hu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Dezhi Lin
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yuanyuan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|