1
|
Morgante O, Della Rocca Y, Marconi GD, Mazzone A, Cavalcanti MFXB, Trubiani O, Diomede F, Pizzicannella J. Geometrically modified bovine pericardium membrane promotes the expression of molecules targeted for a faster integration and vascularization process. Front Bioeng Biotechnol 2024; 12:1455215. [PMID: 39605751 PMCID: PMC11598356 DOI: 10.3389/fbioe.2024.1455215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction In recent years, advancements in technology and the refinement of engineering techniques have facilitated the development of tissue engineering, placing particular emphasis on the use of 3D-biomaterials with several structural and chemical geometric features. In particular, increasing information on biomaterial geometric surfaces has allowed for a better understanding of tissue regenerative processes. In the present study a comparison between BioRipar®, bovine pericardium membrane, modified with micrometric roundish regular open pores (BioR-Ps) and BioRipar® without pores (BioR-NPs) has been investigated. Methods The expression of adhesion molecules such as: fibronectin, vimentin, focal adhesion kinase (FAK), integrin 1β, integrin α5, E-cadherin, and molecules involved in neovascularization processes such as: vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGF-R) were evaluated in an in vitro model containing primary culture of human periodontal ligament stem cells (hPDLSCs) through multiparametric analysis. Results The results indicated a markedly significant expression of all the abovementioned molecules in hPDLSCs cultured withBioR-Ps compared to hPDLSCs cultured with BioR-NPs. Scanning electron microscopy analysis indicated a marked interaction between the cells and the substrate, particularly evident in the proximity of open pores in the hPDLSCs cultured on the BioR-P surface compared to hPDLSCs cultured on the BioR-NP surface. Thus, the presence of micrometric open pores on the scaffold stimulates the proliferation potential of cells apart from their adhesion ability on the patch, particularly near the pores. Discussion Expression of angiogenic molecules strengthened the performance of the modified BioR-Ps. During synthesis, 3D-biomaterial micrometric open-pores enable better bonding between cells and materials, increasing contact area and promoting cellular molecular signals in biomaterial-guided tissue engineering.
Collapse
Affiliation(s)
- Olga Morgante
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Antonella Mazzone
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | - Oriana Trubiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’Annunzio” Chieti-Pescara, Pescara, Italy
| |
Collapse
|
2
|
Malyaran H, Radermacher C, Craveiro RB, Kühnel MP, Jonigk D, Wolf M, Neuss S. Angiogenic potential in periodontal stem cells from upper and lower jaw: A pilot study. J Periodontol 2024; 95:662-672. [PMID: 38708919 DOI: 10.1002/jper.24-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Teeth and supporting oral tissues are attractive and accessible sources of stem cells. Periodontal ligament stem cells (PDLSC) are readily isolated from extracted third molars, and exhibit the ability to self-renew and differentiate into multiple mesodermal cell fates. Clinical experience suggests that the exact location of periodontal defects affects the oral bone remodeling and wound healing. Compared to the mandible, the maxilla heals quicker and more efficiently. Angiogenesis is key in tissue regeneration including dental tissues, yet few studies focus on the angiogenic potential of PDLSC, none of which considered the differences between upper and lower jaw PDLSC (u-PDLSC and l-PDLSC, respectively). METHODS Here we studied the angiogenic potential of u-PDLSC and l-PDLSC and compared the results to well-established mesenchymal stem cells (MSC). Cells were characterized in terms of surface markers, proliferation, and vascular endothelial growth factor (VEGF) secretion, and angiogenic assays were performed. Newly formed capillaries were stained with CD31, and their expression of platelet endothelial cell adhesion molecule (PECAM-1), angiopoietin 2 (ANGPT2), and vascular endothelial growth factor receptor 1 and 2 (VEGFR-1, VEGFR-2) were measured. RESULTS Periodontal stem cells from the upper jaw showed a higher proliferation capacity, secreted more VEGF, and formed capillary networks faster and denser than l-PDLSC. Gene expression of angiogenesis-related genes was significantly higher in u-PDLSC than in l-PDLSC or MSC, given that culture conditions were suitable. CONCLUSION The oral cavity is a valuable source of stem cells, particularly PDLSC, which are promising for oral tissue engineering due to their robust growth, lifelong accessibility, low immunogenicity, and strong differentiation potential. Notably, u-PDLSC exhibit higher VEGF secretion and accelerate capillary formation compared to l-PDLSC or MSC. This study suggests a potential molecular mechanism in capillary formation, emphasizing the significance of precise location isolation of PDLSC.
Collapse
Affiliation(s)
- Hanna Malyaran
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Department of Orthodontics, University Hospital of RWTH Aachen, Aachen, Germany
| | - Chloé Radermacher
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Department of Orthodontics, University Hospital of RWTH Aachen, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, University Hospital of RWTH Aachen, Aachen, Germany
| | - Mark P Kühnel
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital of RWTH Aachen, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Zhao Y, Zhang S, Cheng B, Feng F, Zhu Y, Liu Y, Wang J, Zou D, Ma H, Xu F, Zhang M. Mechanochemical coupling of MGF mediates periodontal regeneration. Bioeng Transl Med 2024; 9:e10603. [PMID: 38193124 PMCID: PMC10771565 DOI: 10.1002/btm2.10603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 01/10/2024] Open
Abstract
Clinical evidence shows that the mechanical stimulation obtained from occlusion could enhance periodontal ligament (PDL) remodeling. Mechano-growth factor (MGF) is a growth factor produced specifically following mechanical stimulus Here, we aim to investigate the mechanical enhancement potential and mechanism of the MGF in PDL regeneration. In vivo study found that MGF produced from the PDL under occlusion force could strongly enhance PDL remodeling. In vitro experiments and mathematical modeling further confirmed the mechanical enhancement effect of MGF for PDLSC differentiation toward fibroblasts. A mechanochemical coupling effect of MGF mediated the enhancement of mechanical effect, which was modulated by Fyn-FAK kinases signaling and subsequent MAPK pathway. Finally, enhanced PDL regeneration under the mechanochemical coupling of MGF and occlusal force was verified in vivo. There exists an additive mechanical effect of MGF mediated by Fyn-FAK crosstalk and subsequent ERK1/2 and p38 phosphorylation, which could be developed as an MGF-centered adjuvant treatment to optimize PDL remodeling, especially for patients with weakened bite force or destroyed periodontium.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and EmergencySchool of Stomatology, Fourth Military Medical UniversityXi’anPeople's Republic of China
- Department of Anesthesiology and Perioperative MedicineXi'an People's Hospital (Xi'an Fourth Hospital), Northwest UniversityXi'anPeople's Republic of China
| | - Songbai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and EmergencySchool of Stomatology, Fourth Military Medical UniversityXi’anPeople's Republic of China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and Technology, Xi'an Jiaotong UniversityXi’anPeople's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong UniversityXi’anPeople's Republic of China
| | - Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and EmergencySchool of Stomatology, Fourth Military Medical UniversityXi’anPeople's Republic of China
| | - Yue Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and EmergencySchool of Stomatology, Fourth Military Medical UniversityXi’anPeople's Republic of China
| | - Yanli Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and EmergencySchool of Stomatology, Fourth Military Medical UniversityXi’anPeople's Republic of China
| | - Junjun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and EmergencySchool of Stomatology, Fourth Military Medical UniversityXi’anPeople's Republic of China
| | - Dehui Zou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and EmergencySchool of Stomatology, Fourth Military Medical UniversityXi’anPeople's Republic of China
| | - Heng Ma
- Department of Physiology & Department of PathophysiologySchool of Basic Medical Sciences, Fourth Military Medical UniversityXi’anPeople's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and Technology, Xi'an Jiaotong UniversityXi’anPeople's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong UniversityXi’anPeople's Republic of China
| | - Min Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and EmergencySchool of Stomatology, Fourth Military Medical UniversityXi’anPeople's Republic of China
| |
Collapse
|
4
|
Bertani G, Di Tinco R, Bertoni L, Orlandi G, Pisciotta A, Rosa R, Rigamonti L, Signore M, Bertacchini J, Sena P, De Biasi S, Villa E, Carnevale G. Flow-dependent shear stress affects the biological properties of pericyte-like cells isolated from human dental pulp. Stem Cell Res Ther 2023; 14:31. [PMID: 36805780 PMCID: PMC9938980 DOI: 10.1186/s13287-023-03254-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/12/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Human dental pulp stem cells represent a mesenchymal stem cell niche localized in the perivascular area of dental pulp and are characterized by low immunogenicity and immunomodulatory/anti-inflammatory properties. Pericytes, mural cells surrounding the endothelium of small vessels, regulate numerous functions including vessel growth, stabilization and permeability. It is well established that pericytes have a tight cross talk with endothelial cells in neoangiogenesis and vessel stabilization, which are regulated by different factors, i.e., microenvironment and flow-dependent shear stress. The aim of this study was to evaluate the effects of a pulsatile unidirectional flow in the presence or not of an inflammatory microenvironment on the biological properties of pericyte-like cells isolated from human dental pulp (hDPSCs). METHODS Human DPSCs were cultured under both static and dynamic conditions with or without pre-activated peripheral blood mononuclear cells (PBMCs). Pulsatile unidirectional flow shear stress was generated by using a specific peristaltic pump. The angiogenic potential and inflammatory properties of hDPSCs were evaluated through reverse phase protein microarrays (RPPA), confocal immunofluorescence and western blot analyses. RESULTS Our data showed that hDPSCs expressed the typical endothelial markers, which were up-regulated after endothelial induction, and were able to form tube-like structures. RPPA analyses revealed that these properties were modulated when a pulsatile unidirectional flow shear stress was applied to hDPSCs. Stem cells also revealed a downregulation of the immune-modulatory molecule PD-L1, in parallel with an up-regulation of the pro-inflammatory molecule NF-kB. Immune-modulatory properties of hDPSCs were also reduced after culture under flow-dependent shear stress and exposure to an inflammatory microenvironment. This evidence was strengthened by the detection of up-regulated levels of expression of pro-inflammatory cytokines in PBMCs. CONCLUSIONS In conclusion, the application of a pulsatile unidirectional flow shear stress induced a modulation of immunomodulatory/inflammatory properties of dental pulp pericyte-like cells.
Collapse
Affiliation(s)
- Giulia Bertani
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Rosanna Di Tinco
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Bertoni
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Orlandi
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Rosa
- grid.7548.e0000000121697570Department of Engineering Sciences and Methods, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Rigamonti
- grid.7548.e0000000121697570Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Signore
- grid.416651.10000 0000 9120 6856RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Jessika Bertacchini
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Sena
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- grid.7548.e0000000121697570Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Erica Villa
- grid.7548.e0000000121697570Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences With Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
5
|
Application of Hydrogels as Sustained-Release Drug Carriers in Bone Defect Repair. Polymers (Basel) 2022; 14:polym14224906. [PMID: 36433033 PMCID: PMC9695274 DOI: 10.3390/polym14224906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Large bone defects resulting from trauma, infection and tumors are usually difficult for the body's repair mechanisms to heal spontaneously. Generally, various types of bones and orthopedic implants are adopted to enhance bone repair and regeneration in the clinic. Due to the limitations of traditional treatments, bone defect repair is still a compelling challenge for orthopedic surgeons. In recent years, bone tissue engineering has become a potential option for bone repair and regeneration. Amidst the various scaffolds for bone tissue engineering applications, hydrogels are considered a new type of non-toxic, non-irritating and biocompatible materials, which are widely used in the biomedicine field currently. Some studies have demonstrated that hydrogels can provide a three-dimensional network structure similar to a natural extracellular matrix for tissue regeneration and can be used to transport cells, biofactors, nutrients and drugs. Therefore, hydrogels may have the potential to be multifunctional sustained-release drug carriers in the treatment of bone defects. The recent applications of different types of hydrogels in bone defect repair were briefly reviewed in this paper.
Collapse
|
6
|
Erythropoietin Activates Autophagy to Regulate Apoptosis and Angiogenesis of Periodontal Ligament Stem Cells via the Akt/ERK1/2/BAD Signaling Pathway under Inflammatory Microenvironment. Stem Cells Int 2022; 2022:9806887. [PMID: 36199627 PMCID: PMC9527112 DOI: 10.1155/2022/9806887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Angiogenic tissue engineering is a vital problem waiting to be settled for periodontal regeneration. Erythropoietin, a multieffect cytokine, has been reported as a protective factor for cell fate. According to our previous study, erythropoietin has a significantly angiogenic effect on periodontal ligament stem cells. To further explore its potential effects and mechanism, we studied biological behaviors of periodontal ligament stem cells under inflammatory microenvironment induced by different concentrations (0, 10, 20, 50, and 100 ng/mL) of tumor necrosis factor-α (TNF-α) and examined how different concentrations (0, 5, 10, 20, and 50 IU/mL) of erythropoietin changed biological behaviors of periodontal ligament stem cells. Materials and Methods. Cell Counting Kit-8 was used for cell proliferation assay. Annexin V-PI-FITC was used for cell apoptosis through flow cytometry. Matrigel plug was adopted to measure the angiogenic capacity in vitro. RNA sequencing was used to detect the downstream signaling pathway. Quantitative real-time polymerase chain reaction was conducted to examine mRNA expression level. Western blot and immunofluorescence were applied to testify the protein expression level. Results. Periodontal ligament stem cells upregulated apoptosis and suppressed autophagy and angiogenesis under inflammatory microenvironment. Erythropoietin could activate autophagy to rescue apoptosis and angiogenesis levels of periodontal ligament stem cells through the Akt/Erk1/2/BAD signaling pathway under inflammatory microenvironment. Conclusions. Erythropoietin could protect periodontal ligament stem cells from inflammatory microenvironment, which provided a novel theory for periodontal regeneration.
Collapse
|
7
|
D’Alessandro D, Ricci C, Milazzo M, Strangis G, Forli F, Buda G, Petrini M, Berrettini S, Uddin MJ, Danti S, Parchi P. Piezoelectric Signals in Vascularized Bone Regeneration. Biomolecules 2021; 11:1731. [PMID: 34827729 PMCID: PMC8615512 DOI: 10.3390/biom11111731] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric signals are locally produced upon mechanical stimulation of these tissues. The specific effects of electric charge generation on different cells are not fully understood, but a substantial amount of evidence has suggested their functional and physiological roles. This review summarizes the special contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key findings that may enable the development of successful vascularized bone replacements useful in orthopedic and otologic surgery.
Collapse
Affiliation(s)
- Delfo D’Alessandro
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Claudio Ricci
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| | - Mario Milazzo
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
| | - Giovanna Strangis
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Francesca Forli
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Gabriele Buda
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.B.); (M.P.)
| | - Stefano Berrettini
- Department of Surgical, Medical, Molecular Pathology and Emergency Medicine, University of Pisa, 56126 Pisa, Italy; (D.D.); (F.F.); (S.B.)
| | - Mohammed Jasim Uddin
- Department of Chemistry, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Serena Danti
- The BioRobotics Intitute, Scuola Superiore Sant’Anna, 56024 Pontedera, Italy;
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy;
| | - Paolo Parchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.R.); (P.P.)
| |
Collapse
|
8
|
Zhao Z, Sun Y, Qiao Q, Zhang L, Xie X, Weir MD, Schneider A, Xu HHK, Zhang N, Zhang K, Bai Y. Human Periodontal Ligament Stem Cell and Umbilical Vein Endothelial Cell Co-Culture to Prevascularize Scaffolds for Angiogenic and Osteogenic Tissue Engineering. Int J Mol Sci 2021; 22:ijms222212363. [PMID: 34830243 PMCID: PMC8621970 DOI: 10.3390/ijms222212363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Vascularization remains a critical challenge in bone tissue engineering. The objective of this study was to prevascularize calcium phosphate cement (CPC) scaffold by co-culturing human periodontal ligament stem cells (hPDLSCs) and human umbilical vein endothelial cells (hUVECs) for the first time; (2) Methods: hPDLSCs and/or hUVECs were seeded on CPC scaffolds. Three groups were tested: (i) hUVEC group (hUVECs on CPC); (ii) hPDLSC group (hPDLSCs on CPC); (iii) co-culture group (hPDLSCs + hUVECs on CPC). Osteogenic differentiation, bone mineral synthesis, and microcapillary-like structures were evaluated; (3) Results: Angiogenic gene expressions of co-culture group were 6–9 fold those of monoculture. vWF expression of co-culture group was 3 times lower than hUVEC-monoculture group. Osteogenic expressions of co-culture group were 2–3 folds those of the hPDLSC-monoculture group. ALP activity and bone mineral synthesis of co-culture were much higher than hPDLSC-monoculture group. Co-culture group formed capillary-like structures at 14–21 days. Vessel length and junction numbers increased with time; (4) Conclusions: The hUVECs + hPDLSCs co-culture on CPC scaffold achieved excellent osteogenic and angiogenic capability in vitro for the first time, generating prevascularized networks. The hPDLSCs + hUVECs co-culture had much better osteogenesis and angiogenesis than monoculture. CPC scaffolds prevacularized via hPDLSCs + hUVECs are promising for dental, craniofacial, and orthopedic applications.
Collapse
Affiliation(s)
- Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Yaxi Sun
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Qingchen Qiao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Li Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Michael D. Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (H.H.K.X.)
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hockin H. K. Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (M.D.W.); (H.H.K.X.)
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
- Correspondence: (N.Z.); (Y.B.)
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China; (Z.Z.); (Y.S.); (Q.Q.); (L.Z.); (X.X.); (K.Z.)
- Correspondence: (N.Z.); (Y.B.)
| |
Collapse
|
9
|
Takeuchi-Igarashi H, Tachibana T, Murakashi E, Kubota S, Numabe Y. Effect of cellular communication network factor 2/connective tissue growth factor on tube formation by endothelial cells derived from human periodontal ligaments. Arch Oral Biol 2021; 132:105279. [PMID: 34628139 DOI: 10.1016/j.archoralbio.2021.105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To clarify the role of cellular communication network factor 2/connective tissue growth factor (CCN2/CTGF) in periodontal tissue regeneration by investigating, the proliferative and tubulogenic responses of human endothelial cells obtained from the periodontal ligament to CCN2/CTGF. DESIGN Endothelial cells were seeded on agar gel medium with or without 50 ng/mL recombinant CCN2/CTGF (rCCN2/CTGF) and cultured for 6 h. Cells were morphologically and phenotypically analyzed by immunofluorescent microscopy. A colorimetric assay was used to evaluate cell proliferation, and transmission electron microscopy (TEM) was used for ultrastructural analysis. RESULTS The proliferation of endothelial cells was best promoted by rCCN2/CTGF at 50 ng/mL. In the control group, tube formation was not observed within 6 h. In contrast, endothelial cells seeded on the agar with 50 ng/mL rCCN2/CTGF clearly showed proliferation with network formation. Under a two-dimensional culture condition, a dense network of endothelial cells was not constructed on the plastic bottom. However, drastic morphological change was observed in the endothelial cells on the agar containing rCCN2/CTGF. The endothelial cells in the dense network were interconnected with each other and showed a tube-like structure. Tight junctions or adherens junctions were observed between the adjoining endothelial cells in the dense network. CONCLUSIONS CCN2/CTGF was found to promote the proliferation and tubulogenesis of endothelial cells from the periodontal ligament. These results suggest that CCN2/CTGF may contribute to the regeneration of damaged periodontal tissue by activating the remaining endothelial cells.
Collapse
Affiliation(s)
- Hiroko Takeuchi-Igarashi
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan; Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Etsuko Murakashi
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan.
| | - Yukihiro Numabe
- Department of Periodontology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| |
Collapse
|
10
|
尤 鹏, 刘 玉, 王 新, 王 思, 唐 琳. [Biocompatibility and effect on bone formation of a native acellular porcine pericardium: Results of in vitro and in vivo]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:776-784. [PMID: 34393244 PMCID: PMC8365079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 08/29/2024]
Abstract
OBJECTIVE To examine the morphology and biocompatibility of a native acellular porcine pericardium (APP) in vitro and to evaluate its barrier function and effects on osteogenesis when used in guided bone regeneration (GBR) in vivo. METHODS First, the morphology of APP (BonanGenⓇ) was detected using a scanning electron microscope (SEM). Next, for biocompatibility test, proliferation of human bone marrow mesenchymal stem cells (hBMSCs) were determined using cell counting kit-8 (CCK-8) after being seeded 1, 3 and 7 days. Meanwhile, the cells stained with phalloidine and 4, 6-diamidino-2-phenylindole (DAPI) were observed using a confocal laser scanning microscopy (CLSM) to view the morphology of cell adhesion and pattern of cell proliferation on day 5. A 3-Beagle dog model with 18 teeth extraction sockets was used for the further research in vivo. These sites were randomly treated by 3 patterns below: filled with Bio-OssⓇand coverd by APP membrane (APP group), filled with Bio-OssⓇand covered by Bio-GideⓇmembrane (BG group) and natural healing (blank group). Micro-CT and hematoxylin-eosin (HE) were performed after 4 and 12 weeks. RESULTS A bilayer and three-dimensional porous ultrastructure was identified for APP through SEM. In vitro, APP facilitated proliferation and adhesion of hBMSCs, especially after 7 days (P < 0.05). In vivo, for the analysis of the whole socket healing, no distinct difference of new bone ratio was found between all the three groups after 4 weeks (P>0.05), however significantly more new bone regeneration was detected in APP group and BG group in comparison to blank group after 12 weeks (P < 0.05). The radio of bone formation below the membrane was significantly higher in APP group and BG group than blank group after 4 and 12 weeks (P < 0.05), however, the difference between APP group and BG group was merely significant in 12 weeks (P < 0.05). Besides, less resorption of buccal crest after 4 weeks and 12 weeks was observed in APP group of a significant difference compared in blank group (P < 0.05). The resorption in BG group was slightly lower than blank group (P>0.05). CONCLUSION APP showed considerable biocompatibility and three-dimentional structure. Performing well as a barrier membrane in the dog alveolar ridge preservation model, APP significantly promoted bone regeneration below it and reduced buccal crest resorption. On the basis of this study, APP is a potential osteoconductive and osteoinductive biomaterial.
Collapse
Affiliation(s)
- 鹏越 尤
- />北京大学口腔医学院·口腔医院,修复科 国家口腔医学中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - 玉华 刘
- />北京大学口腔医学院·口腔医院,修复科 国家口腔医学中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - 新知 王
- />北京大学口腔医学院·口腔医院,修复科 国家口腔医学中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - 思雯 王
- />北京大学口腔医学院·口腔医院,修复科 国家口腔医学中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - 琳 唐
- />北京大学口腔医学院·口腔医院,修复科 国家口腔医学中心 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| |
Collapse
|
11
|
[Biocompatibility and effect on bone formation of a native acellular porcine pericardium: Results of in vitro and in vivo]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53. [PMID: 34393244 PMCID: PMC8365079 DOI: 10.19723/j.issn.1671-167x.2021.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To examine the morphology and biocompatibility of a native acellular porcine pericardium (APP) in vitro and to evaluate its barrier function and effects on osteogenesis when used in guided bone regeneration (GBR) in vivo. METHODS First, the morphology of APP (BonanGenⓇ) was detected using a scanning electron microscope (SEM). Next, for biocompatibility test, proliferation of human bone marrow mesenchymal stem cells (hBMSCs) were determined using cell counting kit-8 (CCK-8) after being seeded 1, 3 and 7 days. Meanwhile, the cells stained with phalloidine and 4, 6-diamidino-2-phenylindole (DAPI) were observed using a confocal laser scanning microscopy (CLSM) to view the morphology of cell adhesion and pattern of cell proliferation on day 5. A 3-Beagle dog model with 18 teeth extraction sockets was used for the further research in vivo. These sites were randomly treated by 3 patterns below: filled with Bio-OssⓇand coverd by APP membrane (APP group), filled with Bio-OssⓇand covered by Bio-GideⓇmembrane (BG group) and natural healing (blank group). Micro-CT and hematoxylin-eosin (HE) were performed after 4 and 12 weeks. RESULTS A bilayer and three-dimensional porous ultrastructure was identified for APP through SEM. In vitro, APP facilitated proliferation and adhesion of hBMSCs, especially after 7 days (P < 0.05). In vivo, for the analysis of the whole socket healing, no distinct difference of new bone ratio was found between all the three groups after 4 weeks (P>0.05), however significantly more new bone regeneration was detected in APP group and BG group in comparison to blank group after 12 weeks (P < 0.05). The radio of bone formation below the membrane was significantly higher in APP group and BG group than blank group after 4 and 12 weeks (P < 0.05), however, the difference between APP group and BG group was merely significant in 12 weeks (P < 0.05). Besides, less resorption of buccal crest after 4 weeks and 12 weeks was observed in APP group of a significant difference compared in blank group (P < 0.05). The resorption in BG group was slightly lower than blank group (P>0.05). CONCLUSION APP showed considerable biocompatibility and three-dimentional structure. Performing well as a barrier membrane in the dog alveolar ridge preservation model, APP significantly promoted bone regeneration below it and reduced buccal crest resorption. On the basis of this study, APP is a potential osteoconductive and osteoinductive biomaterial.
Collapse
|
12
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Marconi GD, Fonticoli L, Rajan TS, Pierdomenico SD, Trubiani O, Pizzicannella J, Diomede F. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in Wound Healing, Tissue Regeneration and Organ Fibrosis. Cells 2021; 10:cells10071587. [PMID: 34201858 PMCID: PMC8307661 DOI: 10.3390/cells10071587] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is an essential event during cell development, in which epithelial cells acquire mesenchymal fibroblast-like features including reduced intercellular adhesion and increased motility. EMT also plays a key role in wound healing processes, which are mediated by inflammatory cells and fibroblasts. These cells secrete specific factors that interact with molecules of the extracellular matrix (ECM) such as collagens, laminins, elastin and tenascins. Wound healing follows four distinct and successive phases characterized by haemostasis, inflammation, cell proliferation and finally tissue remodeling. EMT is classified into three diverse subtypes: type-1 EMT, type-2 EMT and type-3 EMT. Type-1 EMT is involved in embryogenesis and organ development. Type-2 EMT is associated with wound healing, tissue regeneration and organ fibrosis. During organ fibrosis, type-2 EMT occurs as a reparative-associated process in response to ongoing inflammation and eventually leads to organ destruction. Type-3 EMT is implicated in cancer progression, which is linked to the occurrence of genetic and epigenetic alterations, in detail the ones promoting clonal outgrowth and the formation of localized tumors. The current review aimed at exploring the role of EMT process with particular focus on type-2 EMT in wound healing, fibrosis and tissue regeneration, as well as some recent progresses in the EMT and tissue regeneration field, including the modulation of EMT by biomaterials.
Collapse
Affiliation(s)
- Guya D. Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (S.D.P.)
| | - Thangavelu Soundara Rajan
- Department of Biotechnology, School of Life Sciences, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Sante D. Pierdomenico
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (S.D.P.)
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (S.D.P.)
- Correspondence: (O.T.); (F.D.); Tel.: +39-08713554097 (O.T.); +39-08713554080 (F.D.)
| | | | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (L.F.); (S.D.P.)
- Correspondence: (O.T.); (F.D.); Tel.: +39-08713554097 (O.T.); +39-08713554080 (F.D.)
| |
Collapse
|
14
|
Siddiqui Z, Sarkar B, Kim KK, Kadincesme N, Paul R, Kumar A, Kobayashi Y, Roy A, Choudhury M, Yang J, Shimizu E, Kumar VA. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater 2021. [PMID: 33689817 DOI: 10.1016/j.actbio.2021.1003.1001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Angiogenesis is critical for tissue healing and regeneration. Promoting angiogenesis in materials implanted within dental pulp after pulpectomy is a major clinical challenge in endodontics. We demonstrate the ability of acellular self-assembling peptide hydrogels to create extracellular matrix mimetic architectures that guide in vivo development of neovasculature and tissue deposition. The hydrogels possess facile injectability, as well as sequence-level functionalizability. We explore the therapeutic utility of an angiogenic hydrogel to regenerate vascularized pulp-like soft tissue in a large animal (canine) orthotopic model. The regenerated soft tissue recapitulates key features of native pulp, such as blood vessels, neural filaments, and an odontoblast-like layer next to dentinal tubules. Our study establishes angiogenic peptide hydrogels as potent scaffolds for promoting soft tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: A major challenge to endodontic tissue engineering is the lack of in situ angiogenesis within intracanal implants, especially after complete removal of the dental pulp. The lack of a robust vasculature in implants limit integration of matrices with the host tissue and regeneration of soft tissue. We demonstrate the development of an acellular material that promotes tissue revascularization in vivo without added growth factors, in a preclinical canine model of pulp-like soft-tissue regeneration. Such acellular biomaterials would facilitate pulp revascularization approaches in large animal models, and translation into human clinical trials.
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ka-Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Arjun Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jian Yang
- Department of Biomedical Engineering, Huck Institutes of The Life Sciences, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Emi Shimizu
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA; Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
15
|
Siddiqui Z, Sarkar B, Kim KK, Kadincesme N, Paul R, Kumar A, Kobayashi Y, Roy A, Choudhury M, Yang J, Shimizu E, Kumar VA. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater 2021; 126:109-118. [PMID: 33689817 PMCID: PMC8096688 DOI: 10.1016/j.actbio.2021.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis is critical for tissue healing and regeneration. Promoting angiogenesis in materials implanted within dental pulp after pulpectomy is a major clinical challenge in endodontics. We demonstrate the ability of acellular self-assembling peptide hydrogels to create extracellular matrix mimetic architectures that guide in vivo development of neovasculature and tissue deposition. The hydrogels possess facile injectability, as well as sequence-level functionalizability. We explore the therapeutic utility of an angiogenic hydrogel to regenerate vascularized pulp-like soft tissue in a large animal (canine) orthotopic model. The regenerated soft tissue recapitulates key features of native pulp, such as blood vessels, neural filaments, and an odontoblast-like layer next to dentinal tubules. Our study establishes angiogenic peptide hydrogels as potent scaffolds for promoting soft tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: A major challenge to endodontic tissue engineering is the lack of in situ angiogenesis within intracanal implants, especially after complete removal of the dental pulp. The lack of a robust vasculature in implants limit integration of matrices with the host tissue and regeneration of soft tissue. We demonstrate the development of an acellular material that promotes tissue revascularization in vivo without added growth factors, in a preclinical canine model of pulp-like soft-tissue regeneration. Such acellular biomaterials would facilitate pulp revascularization approaches in large animal models, and translation into human clinical trials.
Collapse
Affiliation(s)
- Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Biplab Sarkar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ka-Kyung Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Nurten Kadincesme
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Reshma Paul
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Arjun Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yoshifumi Kobayashi
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Abhishek Roy
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Marwa Choudhury
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jian Yang
- Department of Biomedical Engineering, Huck Institutes of The Life Sciences, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Emi Shimizu
- Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Vivek A Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Oral Biology, Department of Endodontics, Rutgers School of Dental Medicine, Newark, NJ, USA; Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA.
| |
Collapse
|
16
|
Scaffold-Type Structure Dental Ceramics with Different Compositions Evaluated through Physicochemical Characteristics and Biosecurity Profiles. MATERIALS 2021; 14:ma14092266. [PMID: 33925656 PMCID: PMC8124461 DOI: 10.3390/ma14092266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
The design and development of ceramic structures based on 3D scaffolding as dental bone substitutes has become a topic of great interest in the regenerative dentistry research area. In this regard, the present study focuses on the development of two scaffold-type structures obtained from different commercial dental ceramics by employing the foam replication method. At the same time, the study underlines the physicochemical features and the biological profiles of the newly developed scaffolds, compared to two traditional Cerabone® materials used for bone augmentation, by employing both the in vitro Alamar blue proliferation test at 24, 48 and 96 h poststimulation and the in ovo chick chorioallantoic membrane (CAM) assay. The data reveal that the newly developed scaffolds express comparable results with the traditional Cerabone® augmentation masses. In terms of network porosity, the scaffolds show higher pore interconnectivity compared to Cerabone® granules, whereas regarding the biosafety profile, all ceramic samples manifest good biocompatibility on primary human gingival fibroblasts (HGFs); however only the Cerabone® samples induced proliferation of HGF cells following exposure to concentrations of 5 and 10 µg/mL. Additionally, none of the test samples induce irritative activity on the vascular developing plexus. Thus, based on the current results, the preliminary biosecurity profile of ceramic scaffolds supports the usefulness for further testing of high relevance for their possible clinical dental applications.
Collapse
|
17
|
Zhao Q, Li G, Wang T, Jin Y, Lu W, Ji J. Human Periodontal Ligament Stem Cells Transplanted with Nanohydroxyapatite/Chitosan/Gelatin 3D Porous Scaffolds Promote Jaw Bone Regeneration in Swine. Stem Cells Dev 2021; 30:548-559. [PMID: 33736461 DOI: 10.1089/scd.2020.0204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dental-tissue-derived stem cells have been used for tissue engineering owing to their ease of isolation and efficacy in in vitro and in vivo proliferation and differentiation. Nanohydroxyapatite/chitosan/gelatin (nHA/CG) three-dimensional porous scaffolds are promising for bone tissue engineering, especially jaw bone regeneration, because of their structural and functional similarity to natural bone. In our previous study, the efficiency of scaffolds with stem cell complexes in osteogenesis was confirmed in vivo in immunocompromised mice. However, studies on the bone regeneration efficiency of stem cell-seeded nHA/CG scaffolds using large animal jaw bone defect models have not been conducted. This study evaluated the bone regeneration potential of the nHA/CG scaffolds with transplanted human periodontal ligament stem cells (hPDLSCs) in critical-sized jaw bone defects in minipigs. The hPDLSCs isolated from periodontal ligaments of discarded teeth (postorthodontic purposes) were seeded onto the nHA/CG scaffolds. The scaffold was successfully synthesized according to our previous studies. Forty-eight critical-sized jaw bone defects were created in 12 minipigs. The defects were randomly assigned to one of three groups [scaffolds with seeded hPDLSCs (hPDLSCs/nHA/CG), only scaffold (nHA/CG), and a negative control group, ie, no cells and scaffolds implanted into defects] to investigate jaw bone regeneration. The bone regeneration capacities of the three groups were assessed for up to 12 weeks. The results showed that the hPDLSCs adhered well to the nHA/CG scaffold in vitro, and the cell-nHA/CG composites significantly increased new bone formation and generated large bones with normal architectures and vascularization in vivo compared to the nHA/CG and control groups. Immunohistochemistry staining showed that runt-related transcription factor 2 (Runx2) was highly expressed in the bone marrow formed in the hPDLSCs/nHA/CG group. This study provides strong evidence for future clinical applications of the nHA/CG scaffolds transplanted with hPDLSCs to regenerate the bone in large jaw bone defects.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Guifeng Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Tiancong Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yuqin Jin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Wei Lu
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jun Ji
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int J Mol Sci 2020; 21:E3242. [PMID: 32375269 PMCID: PMC7247346 DOI: 10.3390/ijms21093242] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022] Open
Abstract
Bone tissue renewal can be outlined as a complicated mechanism centered on the interaction between osteogenic and angiogenic events capable of leading to bone formation and tissue renovation. The achievement or debacle of bone regeneration is focused on the primary role of vascularization occurrence; in particular, the turning point is the opportunity to vascularize the bulk scaffolds, in order to deliver enough nutrients, growth factors, minerals and oxygen for tissue restoration. The optimal scaffolds should ensure the development of vascular networks to warrant a positive suitable microenvironment for tissue engineering and renewal. Vascular Endothelial Growth Factor (VEGF), a main player in angiogenesis, is capable of provoking the migration and proliferation of endothelial cells and indirectly stimulating osteogenesis, through the regulation of the osteogenic growth factors released and through paracrine signaling. For this reason, we concentrated our attention on two principal groups involved in the renewal of bone tissue defects: the cells and the scaffold that should guarantee an effective vascularization process. The application of Mesenchymal Stem Cells (MSCs), an excellent cell source for tissue restoration, evidences a crucial role in tissue engineering and bone development strategies. This review aims to provide an overview of the intimate connection between blood vessels and bone formation that appear during bone regeneration when MSCs, their secretome-Extracellular Vesicles (EVs) and microRNAs (miRNAs) -and bone substitutes are used in combination.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | - Luigia Fonticoli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | - Jacopo Pizzicanella
- ASL02 Lanciano-Vasto-Chieti, “Ss. Annunziata” Hospital, 66100 Chieti, Italy;
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, 98124 Messina, Italy;
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (G.D.M.); (L.F.); (I.M.); (O.T.)
| |
Collapse
|
19
|
Pizzicannella J, Marconi GD, Pierdomenico SD, Cavalcanti MFXB, Diomede F, Trubiani O. Bovine pericardium membrane, gingival stem cells, and ascorbic acid: a novel team in regenerative medicine. Eur J Histochem 2019; 63:3064. [PMID: 31696691 PMCID: PMC6767323 DOI: 10.4081/ejh.2019.3064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, the development and the application of 3D scaffold able to promote stem cell differentiation represented an essential field of interest in regenerative medicine. In particular, functionalized scaffolds improve bone tissue formation and promote bone defects repair. This research aims to evaluate the role of ascorbic acid (AS) supplementation in an in vitro model, in which a novel 3D-scaffold, bovine pericardium collagen membrane called BioRipar (BioR) was functionalized with human Gingival Mesenchymal Stem Cells (hGMSCs). As extensively reported in the literature, AS is an essential antioxidant molecule involved in the extracellular matrix secretion and in the osteogenic induction. Specifically, hGMSCs were seeded on BioR and treated with 60 and 90 μg/mL of AS in order to assess their growth behavior, the expression of bone specific markers involved in osteogenesis (runt-related transcription factor 2, RUNX2; collagen1A1, COL1A1; osteopontin, OPN; bone morphogenetic protein2/4, BMP2/4), and de novo deposition of calcium. The expression of COL1A1, RUNX2, BMP2/4 and OPN was evaluated by RT-PCR, Western blotting and immunocytochemistry, and proved to be upregulated. Our results demonstrate that after three weeks of treatment AS at 60 and 90 μg/mL operates as an osteogenic inductor in hGMSCs. These data indicate that the AS supplementation produces an enhancement of osteogenic phenotype commitment in an in vitro environment. For this reason, AS could represent a valid support for basic and translational research in tissue engineering and regenerative medicine.
Collapse
|