1
|
Zhi C, Chen X, Yu K, Li M, Li F, Ye Y, Pang Y, Zhang Y, Zhang X, Zhang X. A bifunctional nanocomplex with remineralizing and antibacterial activities to interrupt dental caries. J Control Release 2024; 376:717-731. [PMID: 39461368 DOI: 10.1016/j.jconrel.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Dental caries result from an imbalance between the demineralization and remineralization of dental hard tissues, primarily caused by biofilm accumulation. According to the theory of interrupting dental caries, effective anticaries materials and techniques should possess both remineralizing and antibacterial properties. However, current anticaries materials fail to mimic the process of amelogenesis to achieve remineralization while inhibiting the adhesion of cariogenic bacteria and the formation of biofilms. In this study, silk fibroin (SF) loaded with benzalkonium chloride (BZC) successfully formed an SF-BZC composite. This composite stabilized amorphous calcium phosphate (ACP), creating an ACP@SF-BZC dual-functional nanocomplex with both remineralizing and antibacterial properties. ACP@SF-BZC demonstrated significant anti-adhesion and biofilm inhibitory effects against Streptococcus mutans and Streptococcus sobrinus. Moreover, compared to fluoride, ACP@SF-BZC significantly enhanced the remineralization of demineralized enamel surfaces, forming a stable remineralized layer with improved mechanical properties, both in vitro and in vivo. In summary, the dual-function ACP@SF-BZC nanocomplex, with its remineralizing and antibacterial effects, offers a promising alternative for preventing and arresting enamel caries.
Collapse
Affiliation(s)
- Cheng Zhi
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Xu Chen
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Kaining Yu
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Min Li
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Fan Li
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Yangyang Ye
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Yanyun Pang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong 250012, China
| | - Ye Zhang
- Department of Human Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Xiangyu Zhang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China
| | - Xu Zhang
- Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No. 12 Qixiangtai Road, Heping District, Tianjin 300070, PR China.
| |
Collapse
|
2
|
Suzuki O, Hamai R, Sakai S. The material design of octacalcium phosphate bone substitute: increased dissolution and osteogenecity. Acta Biomater 2023; 158:1-11. [PMID: 36581004 DOI: 10.1016/j.actbio.2022.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Octacalcium phosphate (OCP) has been advocated as a precursor of bone apatite crystals. Recent studies have shown that synthetic OCP exhibits highly osteoconductive properties as a bone substitute material that stems from its ability to activate bone tissue-related cells, such as osteoblasts, osteocytes, and osteoclasts. Accumulated experimental evidence supports the proposition that the OCP-apatite phase conversion under physiological conditions increases the stimulatory capacity of OCP. The conversion of OCP progresses by hydrolysis toward Ca-deficient hydroxyapatite with Ca2+ ion incorporation and inorganic phosphate ion release with concomitant increases in the solid Ca/P molar ratio, specific surface area, and serum protein adsorption affinity. The ionic dissolution rate during the hydrolysis reaction was controlled by introducing a high-density edge dislocation within the OCP lattice by preparing it through co-precipitation with gelatin. The enhanced dissolution intensifies the material biodegradation rate and degree of osteogenecity of OCP. Controlling the biodegradation rate relative to the dissolution acceleration may be vital for controlling the osteogenecity of OCP materials. This study investigates the effects of the ionic dissolution of OCP, focusing on the structural defects in OCP, as the enhanced metastability of the OCP phase modulates biodegradability followed by new bone formation. STATEMENT OF SIGNIFICANCE: Octacalcium phosphate (OCP) is recognized as a highly osteoconductive material that is biodegradable by osteoclastic resorption, followed by new bone formation by osteoblasts. However, if the degradation rate of OCP is increased by maintaining the original osteoconductivity or acquiring a bioactivity better than its current properties, then early replacement with new bone can be expected. Although cell introduction or growth factor addition by scaffold materials is the standard method for tissue engineering, material activity can be augmented by introducing dislocations into the lattice of the OCP. This review article summarizes the effects of introducing structural defects on activating OCP, which was obtained by co-precipitation with gelatin, as a bone substitute material and the mechanism of improved bone replacement performance.
Collapse
Affiliation(s)
- Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
4
|
Ozaki H, Hamai R, Shiwaku Y, Sakai S, Tsuchiya K, Suzuki O. Mutual chemical effect of autograft and octacalcium phosphate implantation on enhancing intramembranous bone regeneration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:345-362. [PMID: 34104115 PMCID: PMC8168741 DOI: 10.1080/14686996.2021.1916378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
This study examined the effect of a mixture of octacalcium phosphate (OCP) and autologous bone on bone regeneration in rat calvaria critical-sized defect (CSD). Mechanically mixed OCP and autologous bone granules (OCP+Auto), approximately 500 to 1000 μm in diameter, and each individual material were implanted in rat CSD for 8 weeks, and subjected to X-ray micro-computed tomography (micro-CT), histology, tartrate-resistant acid phosphatase (TRAP) staining, and histomorphometry for bone regeneration. Osteoblastic differentiation from mesenchymal stem cells (D1 cells) was examined in the presence of non-contacting materials by alkaline phosphatase (ALP) activity for 21 days. The material properties and medium composition before and after the incubation were determined by selected area electron diffraction (SAED) under transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and chemical analysis. The results showed that while bone formation coupled with TRAP-positive osteoclastic resorption and cellular ALP activity were the highest in the Auto group, a positive effect per OCP weight or per autologous bone weight on ALP activity was found. Although the OCP structure was maintained even after the incubation (SAED), micro-deposits were grown on OCP surfaces (TEM). Fibrous tissue was also exposed on the autologous bone surfaces (SEM). Through FT-IR absorption, it was determined that bone mineral-like characteristics of the phosphate group increased in the OCP + Auto group. These findings were interpreted as a structural change from OCP to the apatitic phase, a conclusion supported by the medium degree of saturation changes. The results demonstrate the mutual chemical effect of mixing OCP with autologous bone as an active bone substitute material.
Collapse
Affiliation(s)
- Hisashi Ozaki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Dentistry, Oral and Maxillofacial Surgery, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
5
|
Oizumi I, Hamai R, Shiwaku Y, Mori Y, Anada T, Baba K, Miyatake N, Hamada S, Tsuchiya K, Nishimura SN, Itoi E, Suzuki O. Impact of simultaneous hydrolysis of OCP and PLGA on bone induction of a PLGA-OCP composite scaffold in a rat femoral defect. Acta Biomater 2021; 124:358-373. [PMID: 33556607 DOI: 10.1016/j.actbio.2021.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Effect of the simultaneous hydrolysis of octacalcium phosphate (OCP) and poly (lactic-co-glycolic acid) (PLGA) was investigated on its osteoconductivity. PLGA soaked in phosphate buffered saline with 0%, 20%, and 40% OCP at 37°C for eight weeks indicated that when the OCP dose was increased, 1) the weight loss of PLGA increased, 2) the glass transition temperature of the PLGAs decreased, 3) the saturation degree in the saline moved to nearly saturated condition with respect to hydroxyapatite (HA) but was undersaturated with respect to OCP, and 4) OCP tended to convert to HA by X-ray diffraction and Fourier transform infrared spectroscopy. OCP/PLGA composites of 20% and 40% with more than 92% porosity were produced by combining OCP granules with 1,4-dioxane-solubilizing PLGA followed by lyophilization and then subjected to four- and eight-week in vivo implantation tests in 3 mm diameter rat femora defects. Microfocus X-ray computed tomography, histochemical and histomorphometric analyses showed that while bone formation was very limited with PLGA implantation, the extent of repair tended to increase with increasing OCP content in the PLGA, coupled with PLGA degradation, and bridge the defects with trabecular bone. Tartrate-resistant acid phosphatase-positive osteoclast-like cells were accumulated four weeks after implantation, while osteocalcin-positive osteoblastic cells appeared later at eight weeks, especially in 40% OCP/PLGA. These results suggest that OCP hydrolysis, with phosphate ion release, enhances PLGA hydrolysis, probably through the acid catalysis function of the protons supplied during the hydrolysis of OCP, thereby inducing PLGA biodegradation and new bone formation in the femoral defects. STATEMENT OF SIGNIFICANCE: Octacalcium phosphate (OCP) enhances osteoblasts and osteocytes differentiations during its hydrolysis accompanying inorganic ions exchange in this material. The present study found that the advancement of OCP hydrolysis under physiological conditions had an effect on poly (lactic-co-glycolic acid) (PLGA) degradation through its chemical environmental change around OCP, which was ascertained by the decreases in weight loss and glass transition temperature of PLGA with increasing the dose of OCP co-present. Rat femur-penetrated standardized severe defects were found to repair through bridging the cortical region defect margin. PLGA degradation could be enhanced through an acid catalyst function by protons derived from inorganic phosphate (Pi) ions through OCP hydrolysis under bone forming condition, resulting in showing a prominent bone regenerative capacity in OCP/PLGA composite materials.
Collapse
Affiliation(s)
- Itsuki Oizumi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Naohisa Miyatake
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Tohoku Orthopedic Hospital, Sendai 981-3121, Japan
| | - Soshi Hamada
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| |
Collapse
|
6
|
Tsuchiya K, Hamai R, Sakai S, Suzuki O. Comparative analysis of bovine serum albumin adsorption onto octacalcium phosphate crystals prepared using different methods. Dent Mater J 2020; 39:883-891. [PMID: 32448850 DOI: 10.4012/dmj.2019-250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study compared bovine serum albumin (BSA) adsorption onto octacalcium phosphate (OCP) materials prepared from two wet preparations in the absence (w-OCP) and presence (c-OCP) of gelatin. Raman spectroscopy was used to analyze the BSA adsorption onto OCPs in a 150 mM Tris-HCl buffer containing 0.5 mM calcium and inorganic phosphate (Pi) ions at pH 7.4 and at 37°C. The degree of supersaturation of the supernatants after the adsorption was determined by measuring the ion composition. The results showed that BSA adsorption onto w-OCP was higher than that for c-OCP. The calcium ion concentration of the supernatant decreased for both w-OCP and c-OCP, whereas the Pi ion concentration increased, approaching OCP equilibria at different saturation levels. BSA adsorbed even onto c-OCP, which included a small amount of gelatin during c-OCP preparation. These results indicate that the biodegradability of w-OCP and c-OCP may be modulated through interactions with serum proteins.
Collapse
Affiliation(s)
- Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| |
Collapse
|
7
|
Suzuki O, Shiwaku Y, Hamai R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dent Mater J 2020; 39:187-199. [PMID: 32161239 DOI: 10.4012/dmj.2020-001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Octacalcium phosphate (OCP) is a material that can be converted to hydroxyapatite (HA) under physiological environments and is considered a mineral precursor to bone apatite crystals. The structure of OCP consists of apatite layers stacked alternately with hydrated layers, and closely resembles the structure of HA. The performance of OCP as a bone substitute differs from that of HA materials in terms of their osteoconductivity and biodegradability. OCP manifests a cellular phagocytic response through osteoclast-like cells similar to that exhibited by the biodegradable material β-tricalcium phosphate (β-TCP). The use of OCP for human cranial bone defects involves using its granule or composite form with one of the natural polymers, viz., the reconstituted collagen. This review article discusses the differences and similarities in these calcium phosphate (Ca-P)-based materials from the viewpoint of the structure and their material chemistry, and attempts to elucidate why Ca-P materials, particularly OCP, display unique osteoconductive property.
Collapse
Affiliation(s)
- Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| |
Collapse
|
8
|
Baba K, Shiwaku Y, Hamai R, Mori Y, Anada T, Tsuchiya K, Oizumi I, Miyatake N, Itoi E, Suzuki O. Chemical Stability-Sensitive Osteoconductive Performance of Octacalcium Phosphate Bone Substitute in an Ovariectomized Rat Tibia Defect. ACS APPLIED BIO MATERIALS 2020; 3:1444-1458. [DOI: 10.1021/acsabm.9b01091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Department of Applied Chemistry, Graduate School of Engineering Kyushu University, Fukuoka 819-0395, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Itsuki Oizumi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Naohisa Miyatake
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Tohoku Orthopedic Hospital, Sendai 981-3121, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|