1
|
Zhou Y, Zhang A, Wu J, Guo S, Sun Q. Application and Perspectives: Magnesium Materials in Bone Regeneration. ACS Biomater Sci Eng 2024; 10:3514-3527. [PMID: 38723173 PMCID: PMC11167594 DOI: 10.1021/acsbiomaterials.3c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
The field of bone regeneration has always been a hot and difficult research area, and there is no perfect strategy at present. As a new type of biodegradable material, magnesium alloys have excellent mechanical properties and bone promoting ability. Compared with other inert metals, magnesium alloys have significant advantages and broad application prospects in the field of bone regeneration. By searching the official Web sites and databases of various funds, this paper summarizes the research status of magnesium composites in the field of bone regeneration and introduces the latest scientific research achievements and clinical transformations of scholars in various countries and regions, such as improving the corrosion resistance of magnesium alloys by adding coatings. Finally, this paper points out the current problems and challenges, aiming to provide ideas and help for the development of new strategies for the treatment of bone defects and fractures.
Collapse
Affiliation(s)
| | | | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| |
Collapse
|
2
|
Vinogradov A, Merson E, Myagkikh P, Linderov M, Brilevsky A, Merson D. Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1324. [PMID: 36770330 PMCID: PMC9920771 DOI: 10.3390/ma16031324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 05/27/2023]
Abstract
This article presents a concise overview of modern achievements and existing knowledge gaps in the area of biodegradable magnesium alloys. Hundreds of Mg-based alloys have been proposed as candidates for temporary implants, and this number tends to increase day by day. Therefore, while reviewing common aspects of research in this field, we confine ourselves primarily to the popular Mg-Zn-Ca system, taken as a representative example. Over the last decades, research activities in this area have grown enormously and have produced many exciting results. Aiming at highlighting the areas where research efforts are still scarce, we review the state-of-the-art processing techniques and summarize the functional properties attained via a wide variety of processing routes devised towards achieving a desired properties profile, including the mechanical response in terms of strength, ductility, and fatigue resistance paired with biocompatibility and bio-corrosion resistance or controlled degradability. We pay keen attention to a summary of corrosion properties and mechano-chemical interactions between an aggressive environment and loaded Mg-based structures, resulting in stress corrosion cracking and premature corrosion fatigue failures. The polemic issues and challenges practitioners face in their laboratory research are identified and discussed.
Collapse
Affiliation(s)
- Alexei Vinogradov
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 4791 Trondheim, Norway
- Magnesium Research Center, Kumamoto University, Kumamoto 860-8555, Japan
| | - Evgeniy Merson
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| | - Pavel Myagkikh
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| | - Mikhail Linderov
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| | - Alexandr Brilevsky
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| | - Dmitry Merson
- Institute of Advanced Technologies, Togliatti State University, 445020 Togliatti, Russia
| |
Collapse
|
3
|
Enhancing the Mechanical Properties of Biodegradable Mg Alloys Processed by Warm HPT and Thermal Treatments. MATERIALS 2021; 14:ma14216399. [PMID: 34771925 PMCID: PMC8585245 DOI: 10.3390/ma14216399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
In this study, several biodegradable Mg alloys (Mg5Zn, Mg5Zn0.3Ca, Mg5Zn0.15Ca, and Mg5Zn0.15Ca0.15Zr, numbers in wt%) were investigated after thermomechanical processing via high-pressure torsion (HPT) at elevated temperature as well as after additional heat treatments. Indirect and direct analyses of microstructure revealed that the significant strength increases arise not only from dislocations and precipitates but also from vacancy agglomerates. By contrast with former low-temperature processing routes applied by the authors, a significant ductility was obtained because of temperature-induced dynamic recovery. The low initial values of Young’s modulus were not significantly affected by warm HPT-processing. nor by heat treatments afterwards. Also, corrosion resistance did not change or even increase during those treatments. Altogether, the study reveals a viable processing route for the optimization of Mg alloys to provide enhanced mechanical properties while leaving the corrosion properties unaffected, suggesting it for the use as biodegradable implant material.
Collapse
|
4
|
Jana A, Das M, Balla VK. In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications. J Biomed Mater Res A 2021; 110:462-487. [PMID: 34418295 DOI: 10.1002/jbm.a.37297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Magnesium (Mg) and its alloys have been widely explored as a potential biodegradable implant material. However, the fast degradation of Mg-based alloys under physiological environment has hindered their widespread use for implant applications till date. The present review focuses on in vitro and in vivo degradation of biodegradable Mg alloys, and preventive measures for biomedical applications. Initially, the corrosion assessment approaches to predict the degradation behavior of Mg alloys are discussed along with the measures to control rapid corrosion. Furthermore, this review attempts to explore the correlation between in vitro and in vivo corrosion behavior of different Mg alloys. It was found that the corrosion depends on experimental conditions, materials and the results of different assessment procedures hardly matches with each other. It has been demonstrated the corrosion rate of magnesium can be tailored by alloying elements, surface treatments and heat treatments. Various researches also studied different biocompatible coatings such as dicalcium phosphate dihydrate (DCPD), β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), polycaprolactone (PCL), polylactic acid (PLA), and so on, on Mg alloys to suppress rapid degradation and examine their influence on new bone regeneration as well. This review shows the need for a standard method of corrosion assessment to predict the in vivo corrosion rate based on in vitro data, and thus reducing the in vivo experimentation.
Collapse
Affiliation(s)
- Anuradha Jana
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mitun Das
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vamsi Krishna Balla
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Brunner P, Brumbauer F, Steyskal EM, Renk O, Weinberg AM, Schroettner H, Würschum R. Influence of high-pressure torsion deformation on the corrosion behaviour of a bioresorbable Mg-based alloy studied by positron annihilation. Biomater Sci 2021; 9:4099-4109. [PMID: 33928974 DOI: 10.1039/d1bm00166c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of high-pressure torsion (HPT) on the corrosion behavior of extruded ZX00 (Mg-0.45wt%Zn-0.45wt%Ca) in phosphate buffered saline solution is investigated. MgCaZn alloys are promising candidates for the use as bioresorbable implant materials and, therefore, are in the focus of current research. To improve their strength, severe plastic deformation, e.g. via the technique of HPT, can be used. Positron lifetime spectroscopy (PLS) is applied as sensitive tool for studying open-volume defects which evolve during HPT processing and subsequent corrosion. The studies were complemented by electrochemical impedance spectroscopy (EIS). In the uncorroded state, grain boundaries are the major type of positron trap as quantitatively analysed by means of diffusion-reaction models for positron trapping and annihilation in fine-grained alloys. Upon corrosion, positronium formation and annihilation indicate larger open-volume structures, such as pores and cracks, in the emerging corrosion product and oxide layers. Both PLS and EIS clearly show that HPT-deformation strongly reduces the resistance against corrosion. Evidence is found for corrosion-induced open-volume defects, presumably related to hydrogen, in deeper parts of the material below the corrosion layer.
Collapse
Affiliation(s)
- Philipp Brunner
- Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| | - Florian Brumbauer
- Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| | - Eva-Maria Steyskal
- Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| | - Oliver Renk
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, 8700 Leoben, Austria
| | - Annelie-Martina Weinberg
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria
| | - Hartmuth Schroettner
- Institute of Electron Microscopy and Nanoanalytics, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Roland Würschum
- Institute of Materials Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
| |
Collapse
|
6
|
Rare-earth- and aluminum-free, high strength dilute magnesium alloy for Biomedical Applications. Sci Rep 2020; 10:15839. [PMID: 32985554 PMCID: PMC7522977 DOI: 10.1038/s41598-020-72374-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/31/2020] [Indexed: 11/10/2022] Open
Abstract
Lightweight, recyclable, and plentiful Mg alloys are receiving increased attention due to an exceptional combination of strength and ductility not possible from pure Mg. Yet, due to their alloying elements, such as rare-earths or aluminum, they are either not economical or biocompatible. Here we present a new rare-earth and aluminum-free magnesium-based alloy, with trace amounts of Zn, Ca, and Mn (≈ 2% by wt.). We show that the dilute alloy exhibits outstanding high strength and high ductility compared to other dilute Mg alloys. By direct comparison with annealed material of the same chemistry and using transmission electron microscopy (TEM), high-resolution TEM (HR-TEM) and atom probe tomography analyses, we show that the high strength can be attributed to a number of very fine, Zn/Ca-containing nanoscale precipitates, along with ultra-fine grains. These findings show that forming a hierarchy of nanometer precipitates from just miniscule amounts of solute can invoke simultaneous high strength and ductility, producing an affordable, biocompatible Mg alloy.
Collapse
|
7
|
The Effects of Severe Plastic Deformation and/or Thermal Treatment on the Mechanical Properties of Biodegradable Mg-Alloys. METALS 2020. [DOI: 10.3390/met10081064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, five MgZnCa alloys with low alloy content and high biocorrosion resistance were investigated during thermomechanical processing. As documented by microhardness and tensile tests, high pressure torsion (HPT)-processing and subsequent heat treatments led to strength increases of up to 250%; as much as about 1/3 of this increase was due to the heat treatment. Microstructural analyses by electron microscopy revealed a significant density of precipitates, but estimates of the Orowan strength exhibited values much smaller than the strength increases observed. Calculations using Kirchner’s model of vacancy hardening, however, showed that vacancy concentrations of 10−⁵ could have accounted for the extensive hardening observed, at least when they formed vacancy agglomerates with sizes around 50–100 nm. While such an effect has been suggested for a selected Mg-alloy already in a previous paper of the authors, in this study the effect was substantiated by combined quantitative evaluations from differential scanning calorimetry and X-ray line profile analysis. Those exhibited vacancy concentrations of up to about 10−3 with a marked percentage being part of vacancy agglomerates, which has been confirmed by evaluations of defect specific activation migration enthalpies. The variations of Young’s modulus during HPT-processing and during the subsequent thermal treatments were small. Additionally, the corrosion rate did not markedly change compared to that of the homogenized state.
Collapse
|
8
|
Steiner Petrovič D, Mandrino D, Šarler B, Horky J, Ojdanic A, J. Zehetbauer M, Orlov D. Surface Analysis of Biodegradable Mg-Alloys after Immersion in Simulated Body Fluid. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1740. [PMID: 32276432 PMCID: PMC7178709 DOI: 10.3390/ma13071740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/21/2023]
Abstract
Two binary biodegradable Mg-alloys and one ternary biodegradable Mg-alloy (Mg-0.3Ca, Mg-5Zn and Mg-5Zn-0.3Ca, all in wt%) were investigated. Surface-sensitive X-ray photoelectron spectroscopy analyses (XPS) of the alloy surfaces before and after immersion in simulated body fluid (SBF) were performed. The XPS analysis of the samples before the immersion in SBF revealed that the top layer of the alloy might have a non-homogeneous composition relative to the bulk. Degradation during the SBF immersion testing was monitored by measuring the evolution of H2. It was possible to evaluate the thickness of the sample degradation layers after the SBF immersion based on scanning electron microscopy (SEM) of the tilted sample. The thickness was in the order of 10-100 µm. The typical bio-corrosion products of all of the investigated alloys consisted of Mg, Ca, P and O, which suggests the formation of apatite (calcium phosphate hydroxide), magnesium hydrogen phosphate hydrate and magnesium hydroxide. The bioapplicability of the analyzed alloys with regard to surface composition and degradation kinetics is discussed.
Collapse
Affiliation(s)
- Darja Steiner Petrovič
- Physics and Chemistry of Materials, and Simulation of Materials and Processes, Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia; (D.M.); (B.Š.)
| | - Djordje Mandrino
- Physics and Chemistry of Materials, and Simulation of Materials and Processes, Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia; (D.M.); (B.Š.)
| | - Božidar Šarler
- Physics and Chemistry of Materials, and Simulation of Materials and Processes, Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia; (D.M.); (B.Š.)
- Department of Fluid Dynamics and Thermodynamics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Jelena Horky
- Center for Health & Bioresources, Biomedical Systems, AIT Austrian Institute of Technology, Viktor Kaplan Straße 2, 2700 Wiener Neustadt, Austria;
| | - Andrea Ojdanic
- Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; (A.O.); (M.J.Z.)
| | - Michael J. Zehetbauer
- Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria; (A.O.); (M.J.Z.)
| | - Dmytro Orlov
- Division of Materials Engineering, Department of Mechanical Engineering, Faculty of Engineering (LTH), Lund University, Ole Römers väg 1, 223 63 Lund, Sweden;
| |
Collapse
|
9
|
Grain Size-Related Strengthening and Softening of a Precompressed and Heat-Treated Mg-Zn-Ca Alloy. MATERIALS 2020; 13:ma13020351. [PMID: 31940918 PMCID: PMC7014082 DOI: 10.3390/ma13020351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 11/17/2022]
Abstract
The impact of precompression, thermal treatment and its combination on the deformation behaviour of an extruded Mg–Zn–Ca (ZX10) alloy was studied with respect to a varied average grain size. The Hall–Petch plot was used to highlight the impact in a wide grain size interval. The initial texture of the wrought alloy was characterized by X-ray diffraction. Moreover, the evolution of microstructure and texture was provided by the electron backscatter diffraction (EBSD) technique. The obtained results indicate the strong contribution of deformation-thermal treatment on the resulting deformation behaviour. Particularly, after precompression and heat treatment, higher strengthening effect was observed in the reversed tensile loaded compared to compressed samples without any change in the Hall–Petch slope throughout the grain size interval. Unlike this strengthening effect, a reversed tension–compression yield asymmetry with higher strength values in compression has been obtained.
Collapse
|
10
|
Li W, Liu X, Zheng Y, Wang W, Qiao W, Yeung KWK, Cheung KMC, Guan S, Kulyasova OB, Valiev RZ. In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion. Biomater Sci 2020; 8:5071-5087. [DOI: 10.1039/d0bm00805b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High-pressure torsion processing is an effective way to significantly refine the microstructure and consequently modify the mechanical properties, biodegradable behaviors and biocompatibility of pure Mg, Mg–1Ca and Mg–2Sr alloys.
Collapse
Affiliation(s)
- Wenting Li
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Xiao Liu
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Yufeng Zheng
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Wenhao Wang
- Department of Orthopedics and Traumatology
- The University of Hong Kong
- Pokfulam
- China
| | - Wei Qiao
- Department of Orthopedics and Traumatology
- The University of Hong Kong
- Pokfulam
- China
| | - Kelvin W. K. Yeung
- Department of Orthopedics and Traumatology
- The University of Hong Kong
- Pokfulam
- China
| | - Kenneth M. C. Cheung
- Department of Orthopedics and Traumatology
- The University of Hong Kong
- Pokfulam
- China
| | - Shaokang Guan
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | | | - R. Z. Valiev
- Ufa State Aviation Technical University
- Ufa 450008
- Russia
| |
Collapse
|