1
|
Hamandi F, Tsatalis JT, Goswami T. Morphological human bone features and demography controlling damage accumulation and fracture: a finite element study. Comput Methods Biomech Biomed Engin 2024:1-17. [PMID: 39066601 DOI: 10.1080/10255842.2024.2384475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Prediction of bone fracture risk is clinically challenging. Computational modeling plays a vital role in understanding bone structure and diagnosing bone diseases, leading to novel therapies. The research objectives were to demonstrate the anisotropic structure of the bone at the micro-level taking into consideration the density and subject demography, such as age, gender, body mass index (BMI), height, weight, and their roles in damage accumulation. Out of 438 developed 3D bone models at the micro-level, 46.12% were female. The age distribution ranged from 23 to 95 years. The research unfolds in two phases: micro-morphological features examination and stress distribution investigation. Models were developed using Mimics 22.0 and SolidWorks. The anisotropic material properties were defined before importing into Ansys for simulation. Computational simulations further uncovered variations in maximum von-Misses stress, highlighting that young Black males experienced the highest stress at 127.852 ± 10.035 MPa, while elderly Caucasian females exhibited the least stress at 97.224 ± 14.504 MPa. Furthermore, age-related variations in stress levels for both normal and osteoporotic bone micro models were elucidated, emphasizing the intricate interplay of demographic factors in bone biomechanics. Additionally, a prediction equation for bone density incorporating demographic variables was proposed, offering a personalized modeling approach. In general, this study, which carefully examines the complexities of how bones behave at the micro-level, emphasizes the need for an enhanced approach in orthopedics. We suggest taking individual characteristics into account to make therapeutic interventions more precise and effective.
Collapse
Affiliation(s)
- Farah Hamandi
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, OH, USA
| | - James T Tsatalis
- Department of Radiology, Orthopaedic Surgery, Miami Valley Hospital, Dayton, OH, USA
| | - Tarun Goswami
- Department of Biomedical, Industrial, and Human Factors Engineering, Wright State University, Dayton, OH, USA
- Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Wright State University, Dayton, OH, USA
| |
Collapse
|
2
|
Emonde CK, Eggers ME, Wichmann M, Hurschler C, Ettinger M, Denkena B. Radiopacity Enhancements in Polymeric Implant Biomaterials: A Comprehensive Literature Review. ACS Biomater Sci Eng 2024; 10:1323-1334. [PMID: 38330191 PMCID: PMC10934286 DOI: 10.1021/acsbiomaterials.3c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
Polymers as biomaterials possess favorable properties, which include corrosion resistance, light weight, biocompatibility, ease of processing, low cost, and an ability to be easily tailored to meet specific applications. However, their inherent low X-ray attenuation, resulting from the low atomic numbers of their constituent elements, i.e., hydrogen (1), carbon (6), nitrogen (7), and oxygen (8), makes them difficult to visualize radiographically. Imparting radiopacity to radiolucent polymeric implants is necessary to enable noninvasive evaluation of implantable medical devices using conventional imaging methods. Numerous studies have undertaken this by blending various polymers with contrast agents consisting of heavy elements. The selection of an appropriate contrast agent is important, primarily to ensure that it does not cause detrimental effects to the relevant mechanical and physical properties of the polymer depending upon the intended application. Furthermore, its biocompatibility with adjacent tissues and its excretion from the body require thorough evaluation. We aimed to summarize the current knowledge on contrast agents incorporated into synthetic polymers in the context of implantable medical devices. While a single review was found that discussed radiopacity in polymeric biomaterials, the publication is outdated and does not address contemporary polymers employed in implant applications. Our review provides an up-to-date overview of contrast agents incorporated into synthetic medical polymers, encompassing both temporary and permanent implants. We expect that our results will significantly inform and guide the strategic selection of contrast agents, considering the specific requirements of implantable polymeric medical devices.
Collapse
Affiliation(s)
- Crystal Kayaro Emonde
- Laboratory
for Biomechanics and Biomaterials (LBB), Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany
| | - Max-Enno Eggers
- Institute
of Production Engineering and Machine Tools, Leibniz University Hannover, An der Universität 2, 30823 Garbsen, Hannover, Germany
| | - Marcel Wichmann
- Institute
of Production Engineering and Machine Tools, Leibniz University Hannover, An der Universität 2, 30823 Garbsen, Hannover, Germany
| | - Christof Hurschler
- Laboratory
for Biomechanics and Biomaterials (LBB), Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany
| | - Max Ettinger
- Department
of Orthopedic Surgery − DIAKOVERE Annastift, Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625 Hannover, Germany
| | - Berend Denkena
- Institute
of Production Engineering and Machine Tools, Leibniz University Hannover, An der Universität 2, 30823 Garbsen, Hannover, Germany
| |
Collapse
|
3
|
de Alcântara ACS, Felix LC, Galvão DS, Sollero P, Skaf MS. The Role of the Extrafibrillar Volume on the Mechanical Properties of Molecular Models of Mineralized Bone Microfibrils. ACS Biomater Sci Eng 2023; 9:230-245. [PMID: 36484626 DOI: 10.1021/acsbiomaterials.2c00728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.
Collapse
Affiliation(s)
- Amadeus C S de Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas, Campinas13083-860, SPBrazil.,Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil
| | - Levi C Felix
- Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil.,Department of Applied Physics, Gleb Wataghin Institute of Physics, University of Campinas, Campinas13083-859, SPBrazil
| | - Douglas S Galvão
- Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil.,Department of Applied Physics, Gleb Wataghin Institute of Physics, University of Campinas, Campinas13083-859, SPBrazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas, Campinas13083-860, SPBrazil.,Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil
| | - Munir S Skaf
- Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil.,Institute of Chemistry, University of Campinas, Campinas13083-970, SPBrazil
| |
Collapse
|
4
|
Kim KH, Kim TH, Kim SW, Kim JH, Lee HS, Chang IB, Song JH, Hong YK, Oh JK. Significance of Measuring Lumbar Spine 3-Dimensional Computed Tomography Hounsfield Units to Predict Screw Loosening. World Neurosurg 2022; 165:e555-e562. [PMID: 35772704 DOI: 10.1016/j.wneu.2022.06.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteoporosis is a well-known risk factor of screw loosening. Classically, dual-energy x-ray absorptiometry (DEXA) scan is an easy and cost-effective method of detecting bone mineral density (BMD). However, T-score on DEXA scan can be overestimated in patients with degenerative changes of the spine. Our objective was to identify correlation between Hounsfield unit (HU) measured by 3-dimensional computed tomography (3D-CT) and screw loosening. METHODS A total of 113 patients treated with lumbosacral spinal fusion were reviewed and categorized into a screw loosening group and a normal group to compare their average values of preoperative CT HU. Screw loosening was defined as radiolucent area around screw that was thicker than 1 mm with a "double halo sign". RESULTS There were statistically significant differences in patient age and steroid use between screw loosening and non-loosening groups. There was no significant difference in BMD or T-score between the 2 groups. However, HU values measured in axial, coronal, and sagittal images were significantly different between the 2 groups. In the receiver operating characteristic for HU values measured in CT images, the greatest area under the curve was 0.774 and that was in case of Hounsfield unit measured by axial CT images from L1 to L4. CONCLUSIONS Preoperative CT HU is associated with screw loosening. It can be a better predictor of screw loosening than DEXA scan. The best predictor of screw loosening in this study is the average value of HU from L1 to L4 in axial cut.
Collapse
Affiliation(s)
- Kyeong Hwan Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Tae-Hwan Kim
- Department of Orthopedics, Hallym University Sacred Heart Hospital, Anyang, Korea; Spine Center, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Seok Woo Kim
- Department of Orthopedics, Hallym University Sacred Heart Hospital, Anyang, Korea; Spine Center, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Heui Seung Lee
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - In Bok Chang
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Joon Ho Song
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Jae Keun Oh
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Anyang, Korea; Spine Center, Hallym University Sacred Heart Hospital, Anyang, Korea.
| |
Collapse
|
5
|
Prada DM, Galvis AF, Miller J, Foster JM, Zavaglia C. Multiscale stiffness characterisation of both healthy and osteoporotic bone tissue using subject-specific data. J Mech Behav Biomed Mater 2022; 135:105431. [DOI: 10.1016/j.jmbbm.2022.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 10/31/2022]
|
6
|
Wolynski JG, Ilić MM, Labus KM, Notaroš BM, Puttlitz CM, McGilvray KC. Direct electromagnetic coupling to determine diagnostic bone fracture stiffness. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:510. [PMID: 35928753 PMCID: PMC9347056 DOI: 10.21037/atm-21-5315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Background Rapid prediction of adverse bone fracture healing outcome (e.g., nonunion and/or delayed union) is essential to advise adjunct therapies to reduce patient suffering and improving healing outcome. Radiographic diagnostic methods remain ineffective during early healing, resulting in average nonunion diagnosis times surpassing six months. To address this clinical deficit, we developed a novel diagnostic device to predict fracture healing outcome by noninvasive telemetric measurements of fracture bending stiffness. This study evaluated the hypothesis that our diagnostic antenna system is capable of accurately measuring temporal fracture healing stiffness, and advises the utility of this data for expedited prediction of healing outcomes during early (≤3 weeks) fracture recovery. Methods Fracture repair was simulated, in reverse chronology, by progressively destabilizing cadaveric ovine metatarsals (n=8) stabilized via locking plate fixation. Bending stiffness of each fracture state were predicted using a novel direct electromagnetic coupling diagnostic system, and results were compared to values from material testing (MT) methods. While direct calculation of fracture stiffness in a simplistic cadaver model is possible, comparable analysis of the innumerable permutations of fracture and treatment type is not feasible. Thus, clinical feasibility of direct electromagnetic coupling was explored by parametric finite element (FE) analyses (n=1,632 simulations). Implant mechanics were simulated throughout the course of healing for cases with variations to fracture size, implant type, implant structure, and implant material. Results For all fracture states, stiffness values predicted by the direct electromagnetic coupling system were not significantly different than those quantified by in vitro MT methods [P=0.587, P=0.985, P=0.975; for comparing intact, destabilized, and fully fractured (FF) states; respectively]. In comparable models, the total implant deflection reduction (from FF to intact states) was less than 10% different between direct electromagnetic coupling measurements (82.2 µm) and FE predictions (74.7 µm). For all treatment parameters, FE analyses predicted nonlinear reduction in bending induced implant midspan deflections for increasing callus stiffness. Conclusions This technology demonstrates potential as a noninvasive clinical tool to accurately quantify healing fracture stiffness to augment and expedite healing outcome predictions made using radiographic imaging.
Collapse
Affiliation(s)
- Jakob G. Wolynski
- Orthopaedic Bioengineering Research Laboratory, Departments of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Milan M. Ilić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| | - Kevin M. Labus
- Orthopaedic Bioengineering Research Laboratory, Departments of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Branislav M. Notaroš
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA
| | - Christian M. Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Departments of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Kirk C. McGilvray
- Orthopaedic Bioengineering Research Laboratory, Departments of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Influence of Artificial Soft Tissue on Intra-Operative Vibration Analysis Method for Primary Fixation Monitoring in Cementless Total Hip Arthroplasty. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In cementless Total Hip Arthroplasty (THA), achieving high primary implant fixation is crucial for the long-term survivorship of the femoral stem. While orthopedic surgeons traditionally assess fixation based on their subjective judgement, novel vibration-analysis fixation-monitoring techniques show promising potential in providing the surgeon with objective and quantifiable fixation measurements. This study presents a dynamic response measurement protocol for implant endpoint insertion and evaluates this protocol in the presence of artificial soft tissue. After the artificial femur was prepared in accordance with the THA protocol, the implant was inserted and progressively hammered into the cavity. The Pearson Correlation Coefficient (PCC) and Frequency Response Assurance Criterion (FRAC) corresponding to each insertion hammer hit were derived from the Frequency Response Functions (FRF) corresponding to each insertion step. The protocol was repeated with the artificial femur submerged in artificial soft tissue to imitate the influence of anatomical soft tissue. The FRAC appeared overall more sensitive than the PCC. In the presence of the artificial soft tissue the technique yielded higher PCC and FRAC values earlier in the insertion process. The measurements with artificial soft tissue produced FRFs with fewer peaks, lower resonance frequencies, and overall higher damping factors. The soft tissue appears to limit the fixation-change detection capabilities of the system and a promising potential remedy to this limitation is suggested.
Collapse
|
8
|
Devising Bone Molecular Models at the Nanoscale: From Usual Mineralized Collagen Fibrils to the First Bone Fibers Including Hydroxyapatite in the Extra-Fibrillar Volume. MATERIALS 2022; 15:ma15062274. [PMID: 35329726 PMCID: PMC8955169 DOI: 10.3390/ma15062274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
At the molecular scale, bone is mainly constituted of type-I collagen, hydroxyapatite, and water. Different fractions of these constituents compose different composite materials that exhibit different mechanical properties at the nanoscale, where the bone is characterized as a fiber, i.e., a bundle of mineralized collagen fibrils surrounded by water and hydroxyapatite in the extra-fibrillar volume. The literature presents only models that resemble mineralized collagen fibrils, including hydroxyapatite in the intra-fibrillar volume only, and lacks a detailed prescription on how to devise such models. Here, we present all-atom bone molecular models at the nanoscale, which, differently from previous bone models, include hydroxyapatite both in the intra-fibrillar volume and in the extra-fibrillar volume, resembling fibers in bones. Our main goal is to provide a detailed prescription on how to devise such models with different fractions of the constituents, and for that reason, we have made step-by-step scripts and files for reproducing these models available. To validate the models, we assessed their elastic properties by performing molecular dynamics simulations that resemble tensile tests, and compared the computed values against the literature (both experimental and computational results). Our results corroborate previous findings, as Young’s Modulus values increase with higher fractions of hydroxyapatite, revealing all-atom bone models that include hydroxyapatite in both the intra-fibrillar volume and in the extra-fibrillar volume as a path towards realistic bone modeling at the nanoscale.
Collapse
|
9
|
Damage Function of a Quasi-Brittle Material, Damage Rate, Acceleration and Jerk during Uniaxial Compression: Model and Application to Analysis of Trabecular Bone Tissue Destruction. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A diversity of quasi-brittle materials can be observed in various engineering structures and natural objects (rocks, frozen soil, concrete, ceramics, bones, etc.). In order to predict the condition and safety of these objects, a large number of studies aimed at analyzing the strength of quasi-brittle materials has been conducted and presented in publications. However, at the modeling level, the problem of estimating the rate and acceleration of destruction of a quasi-brittle material under loading remains relevant. The purpose of the study was to substantiate the function of damage to a quasi-brittle material under uniaxial compression, determine the rate, acceleration and jerk of the damage process, and also to apply the results obtained to predicting the destruction of trabecular bone tissue. In accordance with the purpose of the study, the basic concepts of fracture mechanics and standard methods of mathematical modeling were used. The proposed model is based on the application of the previously obtained differentiable damage function without parameters. The results of the study are presented in the form of plots and analytical relations for computing the rate, acceleration and jerk of the damage process. Examples are given. The predicted peak of the combined effect of rate, acceleration and jerk of the damage process are found to be of practical interest as an additional criterion for destruction. The simulation results agree with the experimental data known from the available literature.
Collapse
|
10
|
Cheng Y, Cheng G, Xie C, Yin C, Dong X, Li Z, Zhou X, Wang Q, Deng H, Li Z. Biomimetic Silk Fibroin Hydrogels Strengthened by Silica Nanoparticles Distributed Nanofibers Facilitate Bone Repair. Adv Healthc Mater 2021; 10:e2001646. [PMID: 33694330 DOI: 10.1002/adhm.202001646] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/13/2021] [Indexed: 11/06/2022]
Abstract
Various materials are utilized as artificial substitutes for bone repair. In this study, a silk fibroin (SF) hydrogel reinforced by short silica nanoparticles (SiNPs)-distributed-silk fibroin nanofibers (SiNPs@NFs), which exhibits a superior osteoinductive property, is fabricated for treating bone defects. SF acts as the base part of the composite scaffold to mimic the extracellular matrix (ECM), which is the organic component of a native bone. The distribution of SiNPs clusters within the composite hydrogel partially mimics the distribution of mineral crystals within the ECM. Incorporation of SiNPs@NFs enhances the mechanical properties of the composite hydrogel. In addition, the composite hydrogel provides a biocompatible microenvironment for cell adhesion, proliferation, and osteogenic differentiation in vitro. In vivo studies confirm that the successful repair is achieved with the formation of a large amount of new bone in the large-sized cranial defects that are treated with the composite hydrogel. In conclusion, the SiNPs@NFs-reinforced-hydrogel fabricated in this study has the potential for use in bone tissue engineering.
Collapse
Affiliation(s)
- Yuet Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Gu Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Congyong Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Chengcheng Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Xiangyang Dong
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology School of Resource and Environmental Science Wuhan University Wuhan 430079 China
- Hubei Engineering Center of Natural Polymer‐based Medical Materials Wuhan University Wuhan 430072 China
| | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| | - Xue Zhou
- School of Public Health Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Qun Wang
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50014 USA
| | - Hongbing Deng
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology School of Resource and Environmental Science Wuhan University Wuhan 430079 China
- Hubei Engineering Center of Natural Polymer‐based Medical Materials Wuhan University Wuhan 430072 China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 China
| |
Collapse
|