1
|
Chirilă L, Stan MS, Olaru S, Popescu A, Lite MC, Toma D, Voinea IC. Novel Collagen-Based Emulsions Embedded with Palmarosa Essential Oil, and Chamomile and Calendula Tinctures, for Skin-Friendly Textile Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3867. [PMID: 39124531 PMCID: PMC11313595 DOI: 10.3390/ma17153867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Skin-friendly textile materials were obtained by applying oil-in-water emulsions based on palmarosa essential oil, chamomile, and calendula tinctures onto cotton fabrics. Different formulations based on these bioactive principles incorporated in collagen as polymeric matrices were prepared and immobilized on a plain weave textile structure from 100% cotton. The functionalized textile materials were characterized in terms of physicochemical, mechanical, antibacterial, and biocompatibility points of view. The pH values of the prepared emulsions were in the range of 4.81-5.23 and showed no significant differences after 4 h of storage. Moreover, the addition of a higher quantity of active principles (palmarosa essential oil and plant tinctures) caused slightly lower values of acidic pH. The electrical conductivity of the obtained emulsions increased with the decrease in the oil phases in the system. The highest values were obtained for the emulsion developed with the smallest volume fraction of active principle-palmarosa essential oil and plant tinctures. The emulsion that contained the least amount of collagen and the highest number of active principles exhibited the lowest stability. The textile materials treated with synthesized emulsions exerted antibacterial effects against S. aureus and E. coli strains and did not affect keratinocyte growth, spreading, and organization, highlighting the biocompatibility of these developed skin-friendly textiles.
Collapse
Affiliation(s)
- Laura Chirilă
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| | - Sabina Olaru
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Alina Popescu
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Mihaela-Cristina Lite
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Doina Toma
- National Research and Development Institute for Textiles and Leather–INCDTP, Lucrețiu Pătrășcanu 16, 030508 Bucharest, Romania; (L.C.); (S.O.); (A.P.); (M.-C.L.); (D.T.)
| | - Ionela C. Voinea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
2
|
Gupta P, Meher MK, Tripathi S, Poluri KM. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol Aspects Med 2024; 98:101290. [PMID: 38945048 DOI: 10.1016/j.mam.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biotechnology, Graphic Era (Demmed to be Unievrsity), Dehradun, 248001, Uttarakhand, India
| | - Mukesh Kumar Meher
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Buriti BMADB, Figueiredo PLB, Passos MF, da Silva JKR. Polymer-Based Wound Dressings Loaded with Essential Oil for the Treatment of Wounds: A Review. Pharmaceuticals (Basel) 2024; 17:897. [PMID: 39065747 PMCID: PMC11279661 DOI: 10.3390/ph17070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Wound healing can result in complex problems, and discovering an effective method to improve the healing process is essential. Polymeric biomaterials have structures similar to those identified in the extracellular matrix of the tissue to be regenerated and also avoid chronic inflammation, and immunological reactions. To obtain smart and effective dressings, bioactive agents, such as essential oils, are also used to promote a wide range of biological properties, which can accelerate the healing process. Therefore, we intend to explore advances in the potential for applying hybrid materials in wound healing. For this, fifty scientific articles dated from 2010 to 2023 were investigated using the Web of Science, Scopus, Science Direct, and PubMed databases. The principles of the healing process, use of polymers, type and properties of essential oils and processing techniques, and characteristics of dressings were identified. Thus, the plants Syzygium romanticum or Eugenia caryophyllata, Origanum vulgare, and Cinnamomum zeylanicum present prospects for application in clinical trials due to their proven effects on wound healing and reducing the incidence of inflammatory cells in the site of injury. The antimicrobial effect of essential oils is mainly due to polyphenols and terpenes such as eugenol, cinnamaldehyde, carvacrol, and thymol.
Collapse
Affiliation(s)
- Bruna Michele A. de B. Buriti
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
| | - Pablo Luis B. Figueiredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
| | - Marcele Fonseca Passos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Belém 66079-420, PA, Brazil; (P.L.B.F.); (M.F.P.)
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| | - Joyce Kelly R. da Silva
- Instituto de Ciências Exatas e Naturais, Programa de Pós-Graduação em Química, Universidade Federal do Pará, Belém 66075-110, PA, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
4
|
Gaidau C, Râpă M, Ionita G, Stanculescu IR, Zaharescu T, Constantinescu RR, Lazea-Stoyanova A, Stanca M. The Influence of Gamma Radiation on Different Gelatin Nanofibers and Gelatins. Gels 2024; 10:226. [PMID: 38667645 PMCID: PMC11049530 DOI: 10.3390/gels10040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Gelatin nanofibers are known as wound-healing biomaterials due to their high biocompatible, biodegradable, and non-antigenic properties compared to synthetic-polymer-fabricated nanofibers. The influence of gamma radiation doses on the structure of gelatin nanofiber dressings compared to gelatin of their origin is little known, although it is very important for the production of stable bioactive products. Different-origin gelatins were extracted from bovine and donkey hides, rabbit skins, and fish scales and used for fabrication of nanofibers through electrospinning of gelatin solutions in acetic acid. Nanofibers with sizes ranging from 73.50 nm to 230.46 nm were successfully prepared, thus showing the potential of different-origin gelatin by-products valorization as a lower-cost alternative to native collagen. The gelatin nanofibers together with their origin gelatins were treated with 10, 20, and 25 kGy gamma radiation doses and investigated for their structural stability through chemiluminescence and FTIR spectroscopy. Chemiluminescence analysis showed a stable behavior of gelatin nanofibers and gelatins up to 200 °C and increased chemiluminescent emission intensities for nanofibers treated with gamma radiation, at temperatures above 200 °C, compared to irradiated gelatins and non-irradiated nanofibers and gelatins. The electron paramagnetic (EPR) signals of DMPO adduct allowed for the identification of long-life HO● radicals only for bovine and donkey gelatin nanofibers treated with a 20 kGy gamma radiation dose. Microbial contamination with aerobic microorganisms, yeasts, filamentous fungi, Staphylococcus aureus, Escherichia coli, and Candida albicans of gelatin nanofibers treated with 10 kGy gamma radiation was under the limits required for pharmaceutical and topic formulations. Minor shifts of FTIR bands were observed at irradiation, indicating the preservation of secondary structure and stable properties of different-origin gelatin nanofibers.
Collapse
Affiliation(s)
- Carmen Gaidau
- Research and Development National Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (C.G.); (R.-R.C.)
| | - Maria Râpă
- Faculty of Materials Science and Engineering, POLITEHNICA Bucharest National University of Science and Technology, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Gabriela Ionita
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania;
| | - Ioana Rodica Stanculescu
- Department of Analytical and Physical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Bd., 030018 Bucharest, Romania;
- Horia Hulubei National Institute of Research and Development for Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Magurele, Romania
| | - Traian Zaharescu
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, P.O. Box 149, 030138 Bucharest, Romania;
| | - Rodica-Roxana Constantinescu
- Research and Development National Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (C.G.); (R.-R.C.)
| | - Andrada Lazea-Stoyanova
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Maria Stanca
- Research and Development National Institute for Textiles and Leather-Division Leather and Footwear Research Institute, 93 Ion Minulescu Street, 031215 Bucharest, Romania; (C.G.); (R.-R.C.)
| |
Collapse
|
5
|
Mishra P, Gupta P, Srivastava R, Srivastava AK, Poluri KM, Prasad R. Exploration of Antibiofilm and In Vivo Wound Healing Activity of p-Cymene-Loaded Gellan/PVA Nanofibers. ACS APPLIED BIO MATERIALS 2023; 6:1816-1831. [PMID: 37075306 DOI: 10.1021/acsabm.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Wound dressings with outstanding biocompatibility, antimicrobial, and tissue regeneration activities are essential to manage emerging recalcitrant antifungal infections to speed up healing. In this study, we have engineered p-cymene-loaded gellan/PVA nanofibers using electrospinning. Morphological and physicochemical properties of the nanofibers were characterized using a multitude of techniques to validate the successful integration of p-cymene (p-cym). The fabricated nanomaterials exhibited strong antibiofilm activity against Candida albicans and Candida glabrata compared to pure p-cymene. In vitro biocompatibility assay demonstrated that nanofibers did not possess any cytotoxicity to the NIH3T3 cell lines. In vivo, full-thickness excision wound healing study showed that the nanofibers were able to heal skin lesions faster than the conventional clotrimazole gel in 24 days without forming any scar. These findings unraveled p-cymene-loaded gellan gum (GA)/poly(vinyl alcohol) (PVA) nanofibers as an effective biomaterial for cutaneous tissue regeneration.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Department of Biotechnology, Graphic Era University, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions, Faculty of Pharmacy, Moradabad 244001, Uttar Pradesh, India
| | - Amit Kumar Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
6
|
Berechet MD, Gaidau C, Nešić A, Constantinescu RR, Simion D, Niculescu O, Stelescu MD, Sandulache I, Râpă M. Antioxidant and Antimicrobial Properties of Hydrolysed Collagen Nanofibers Loaded with Ginger Essential Oil. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1438. [PMID: 36837065 PMCID: PMC9965637 DOI: 10.3390/ma16041438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Hydrolysed collagen obtained from bovine leather by-products were loaded with ginger essential oil and processed by the electrospinning technique for obtaining bioactive nanofibers. Particle size measurements of hydrolysed collagen, GC-MS analysis of ginger essential oil (EO), and structural and SEM examinations of collagen nanofibers loaded with ginger essential oil collected on waxed paper, cotton, and leather supports were performed. Antioxidant and antibacterial activities against Staphylococcus aureus and Escherichia coli and antifungal activity against Candida albicans were also determined. Data show that the hydrolysed collagen nanofibers loaded with ginger EO can be used in the medical, pharmaceutical, cosmetic, or niche fields.
Collapse
Affiliation(s)
- Mariana Daniela Berechet
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Carmen Gaidau
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Aleksandra Nešić
- Faculty of Technology, University of Novi Sad, 21102 Novi Sad, Serbia
| | - Rodica Roxana Constantinescu
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Demetra Simion
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Olga Niculescu
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Maria Daniela Stelescu
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Irina Sandulache
- The National Research & Development Institute for Textiles and Leather, 16 Lucretiu Patrascanu Street, 030508 Bucharest, Romania
| | - Maria Râpă
- Faculty of Materials Science and Engineering, Polytechnic University of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
7
|
Bartošová L, Sedlaříková J, Peer P, Janalíková M, Pleva P. Antibacterial and Antifouling Efficiency of Essential Oils-Loaded Electrospun Polyvinylidene Difluoride Membranes. Int J Mol Sci 2022; 24:ijms24010423. [PMID: 36613867 PMCID: PMC9820142 DOI: 10.3390/ijms24010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Nanofibers have become a promising material in many industries in recent years, mainly due to their various properties. The only disadvantage of nanofibers as a potential filtration membrane is their short life due to clogging by bacteria in water treatment. The enrichment of nanofibers with active molecules could prevent these negative effects, represented by essential oils components such as Thymol, Eugenol, Linalool, Cinnamaldehyde and Carvacrol. Our study deals with the preparation of electrospun polyvinylidene difluoride (PVDF)-based nanofibers with incorporated essential oils, their characterization, testing their antibacterial properties and the evaluation of biofilm formation on the membrane surface. The study of the nanofibers' morphology points to the nanofibers' diverse fiber diameters ranging from 570 to 900 nm. Besides that, the nanofibers were detected as hydrophobic material with wettability over 130°. The satisfactory results of PVDF membranes were observed in nanofibers enriched with Thymol and Eugenol that showed their antifouling activity against the tested bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Therefore, these PVDF membranes could find potential applications as filtration membranes in healthcare or the environment.
Collapse
Affiliation(s)
- Lucie Bartošová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Jana Sedlaříková
- Department of Fat, Surfactant and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Petra Peer
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Magda Janalíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
| | - Pavel Pleva
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic
- Correspondence:
| |
Collapse
|
8
|
Râpă M, Zaharescu T, Stefan LM, Gaidău C, Stănculescu I, Constantinescu RR, Stanca M. Bioactivity and Thermal Stability of Collagen-Chitosan Containing Lemongrass Essential Oil for Potential Medical Applications. Polymers (Basel) 2022; 14:polym14183884. [PMID: 36146031 PMCID: PMC9503703 DOI: 10.3390/polym14183884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Bioactive collagen–chitosan–lemongrass (COL–CS–LG) membranes were prepared by casting method and analyzed for potential biomedical applications. For COL–CS–LG membranes, LG essential oil release, antioxidant properties, in vitro cytotoxicity and antimicrobial assessments were conducted, as well as free radical determination after gamma irradiation by chemiluminescence, and structural characteristics analysis through Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR–FTIR) and Differential Scanning Calorimetry (DSC). The evaluation of non-isothermal chemiluminescence after gamma radiation exposure to COL–CS–LG membranes revealed a slowing down of the oxidation process at temperatures exceeding 200 °C, in correlation with antioxidant activity. Antimicrobial properties and minimum inhibitory concentrations were found to be in correlation with cytotoxicity limits, offering the optimum composition for designing new biomaterials.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Traian Zaharescu
- INCDIE ICPE CA, 313 Splaiul Unirii, P.O. Box 149, 030138 Bucharest, Romania
| | - Laura Mihaela Stefan
- National Institute of R&D for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Carmen Gaidău
- The National Research & Development Institute for Textiles and Leather-Division Leather and Footwear Resesarch Institute (ICPI), 93 Ion Minulescu Street, 031215 Bucharest, Romania
- Correspondence: (C.G.); (I.S.)
| | - Ioana Stănculescu
- Horia Hulubei National Institute of Research and Development for Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania
- Department of Physical Chemistry, University of Bucharest, 4–12 Regina Elisabeta Boulevard, 030018 Bucharest, Romania
- Correspondence: (C.G.); (I.S.)
| | - Rodica Roxana Constantinescu
- The National Research & Development Institute for Textiles and Leather-Division Leather and Footwear Resesarch Institute (ICPI), 93 Ion Minulescu Street, 031215 Bucharest, Romania
| | - Maria Stanca
- The National Research & Development Institute for Textiles and Leather-Division Leather and Footwear Resesarch Institute (ICPI), 93 Ion Minulescu Street, 031215 Bucharest, Romania
| |
Collapse
|
9
|
Coyotl-Pérez WA, Rubio-Rosas E, Morales-Rabanales QN, Ramírez-García SA, Pacheco-Hernández Y, Pérez-España VH, Romero-Arenas O, Villa-Ruano N. Improving the Shelf Life of Avocado Fruit against Clonostachys rosea with Chitosan Hybrid Films Containing Thyme Essential Oil. Polymers (Basel) 2022; 14:polym14102050. [PMID: 35631932 PMCID: PMC9147513 DOI: 10.3390/polym14102050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/10/2022] Open
Abstract
Hass avocadoes are one of the most popular fruits consumed worldwide because of their nutritional and nutraceutical content. Nevertheless, these fruits are susceptible to phytopathogen attacks that decrease fruit quality during the postharvest period. Herein we present the results of the in situ fungistatic activity of four hybrid films (FT1−FT4) manufactured with chitosan and different concentrations of the essential oil of thyme (TvEO). The films were evaluated as biodegradable materials to prevent fruit decay triggered by Clonostachys rosea which is considered an emergent phytopathogen of this crop. The in situ fungistatic strength, spectroscopic properties (FT-IR), optical features (transmittance/opacity), and consistency obtained by microscopic analysis (SEM), indicated that the films FT3 and FT4 possessed the best physicochemical properties to protect Hass avocadoes against the soft rot produced by C. rosea. Avocadoes treated with the films FT3 and FT4 significantly (p < 0.01) conserved fruit firmness and nutritional composition (protein, fat, fiber, and reducing sugars) as well as the nutraceutical content (oleic, palmitoleic, linoleic, and palmitic acids) of infected avocados for 21 days. Our results validate the potential use of the films FT3 and FT4 to prevent the soft rot caused by C. rosea and to improve the shelf life of Hass avocadoes.
Collapse
Affiliation(s)
- Wendy Abril Coyotl-Pérez
- Centro de Agroecología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, San Pedro Zacachimalpa, Puebla 72960, Mexico;
| | - Efraín Rubio-Rosas
- Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Quetzali Nicte Morales-Rabanales
- Unidad Profesional Interdisciplinaria Ingeniería Tecnología Avanzada, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2580, La Laguna Ticoman, Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Sergio Alberto Ramírez-García
- Instituto de Nutrición, Universidad de la Sierra Sur, Guillermo Rojas Mijangos, Col. Ciudad Universitaria, Miahuatlán de Porfirio Díaz, Oaxaca 70800, Mexico;
| | - Yesenia Pacheco-Hernández
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Carretera Irapuato-León, Irapuato 36824, Mexico;
| | - Victor Hugo Pérez-España
- Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan Km 8, Chimalpa 43920, Mexico;
| | - Omar Romero-Arenas
- Centro de Agroecología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, San Pedro Zacachimalpa, Puebla 72960, Mexico;
- Correspondence: or (O.R.-A.); or (N.V.-R.)
| | - Nemesio Villa-Ruano
- CONACyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Correspondence: or (O.R.-A.); or (N.V.-R.)
| |
Collapse
|
10
|
Maliszewska I, Czapka T. Electrospun Polymer Nanofibers with Antimicrobial Activity. Polymers (Basel) 2022; 14:polym14091661. [PMID: 35566830 PMCID: PMC9103814 DOI: 10.3390/polym14091661] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, nanofibers with antimicrobial activity are of great importance due to the widespread antibiotic resistance of many pathogens. Electrospinning is a versatile method of producing ultrathin fibers with desired properties, and this technique can be optimized by controlling parameters such as solution/melt viscosity, feeding rate, and electric field. High viscosity and slow feeding rate cause blockage of the spinneret, while low viscosity and high feeding rate result in fiber discontinuities or droplet formation. The electric field must be properly set because high field strength shortens the solidification time of the fluid streams, while low field strength is unable to form the Taylor cone. Environmental conditions, temperature, and humidity also affect electrospinning. In recent years, significant advances have been made in the development of electrospinning methods and the engineering of electrospun nanofibers for various applications. This review discusses the current research on the use of electrospinning to fabricate composite polymer fibers with antimicrobial properties by incorporating well-defined antimicrobial nanoparticles (silver, titanium dioxide, zinc dioxide, copper oxide, etc.), encapsulating classical therapeutic agents (antibiotics), plant-based bioactive agents (crude extracts, essential oils), and pure compounds (antimicrobial peptides, photosensitizers) in polymer nanofibers with controlled release and anti-degradation protection. The analyzed works prove that the electrospinning process is an effective strategy for the formation of antimicrobial fibers for the biomedicine, pharmacy, and food industry.
Collapse
Affiliation(s)
- Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| | - Tomasz Czapka
- Department of Electrical Engineering Fundamentals, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (I.M.); (T.C.)
| |
Collapse
|
11
|
Rofeal M, Abdelmalek F, Steinbüchel A. Naturally-Sourced Antibacterial Polymeric Nanomaterials with Special Reference to Modified Polymer Variants. Int J Mol Sci 2022; 23:4101. [PMID: 35456918 PMCID: PMC9030380 DOI: 10.3390/ijms23084101] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advancements in treating bacterial infections, antibiotic resistance (AR) is still an emerging issue. However, polymeric nanocarriers have offered unconventional solutions owing to their capability of exposing more functional groups, high encapsulation efficiency (EE) and having sustained delivery. Natural polymeric nanomaterials (NMs) are contemplated one of the most powerful strategies in drug delivery (DD) in terms of their safety, biodegradability with almost no side effects. Every nanostructure is tailored to enhance the system functionality. For example, cost-effective copper NPs could be generated in situ in cellulose sheets, demonstrating powerful antibacterial prospects for food safety sector. Dendrimers also have the capacity for peptide encapsulation, protecting them from proteolytic digestion for prolonged half life span. On the other hand, the demerits of naturally sourced polymers still stand against their capacities in DD. Hence, Post-synthetic modification of natural polymers could play a provital role in yielding new hybrids while retaining their biodegradability, which could be suitable for building novel super structures for DD platforms. This is the first review presenting the contribution of natural polymers in the fabrication of eight polymeric NMs including particulate nanodelivery and nanofabrics with antibacterial and antibiofilm prospects, referring to modified polymer derivatives to explore their full potential for obtaining sustainable DD products.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90–924 Lodz, Poland;
| |
Collapse
|
12
|
Mishra P, Gupta P, Srivastava AK, Poluri KM, Prasad R. Eucalyptol/ β-cyclodextrin inclusion complex loaded gellan/PVA nanofibers as antifungal drug delivery system. Int J Pharm 2021; 609:121163. [PMID: 34624448 DOI: 10.1016/j.ijpharm.2021.121163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022]
Abstract
Fungal infections pose a serious threat to humankind due to the toxicity of conventional antifungal therapy and continuous emerging incidence of multidrug resistance. Essential oils fascinated researchers because of their broad antimicrobial activity and minimal cytotoxicity. However, hydrophobic, volatile and low water solubility of essential oils hinder their applications in pharmaceutical industries. Therefore, in this study we have loaded eucalyptol/ β-cyclodextrin inclusion complex to gellan/polyvinyl alcohol nanofibers (EPNF) to eradicate Candida albicans and Candida glabrata biofilms. The electrospun nanofibers characterized by various physicochemical techniques and it was observed that EPNF possess highly hydrophilic surface property that facilitate rapid drug release. EPNF inhibited approximately 70% biofilm of C. albicans and C. glabrata. Time kill results depicted that eucalyptol (EPTL) encapsulation in the nanofibers prolonged its antifungal activity than the pure EPTL. Electron microscopy studies revealed that EPNF disrupted the cell surface of Candida. Collectively the current study suggested nanofiber encapsulation enhanced antibiofilm activity of eucalyptol and these nanoscale systems can serve as an alternative therapeutic strategy to treat fungal infections. Further, the developed nanofibrous materials can be applied as cost effective coating agent for biomedical implants.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Amit Kumar Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
13
|
Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings. Pharmaceutics 2021; 13:pharmaceutics13111939. [PMID: 34834354 PMCID: PMC8621651 DOI: 10.3390/pharmaceutics13111939] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/13/2023] Open
Abstract
In this study, lemon balm (Melissa officinalis L.) and dill (Anethum graveolens L.) essential oils (EOs) were encapsulated into collagen hydrolysates extracted from bovine tendons and rabbit skins, both mixed with chitosan (CS) by using the coaxial electrospinning technique for potential wound dressing applications. The morphology and chemical composition of the electrospun nanofibers were investigated using scanning electron microscopy (SEM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The antimicrobial activity of the dill EO and lemon EO, as well as the electrospun samples loaded with essential oils was determined by disk diffusion assay against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, and Salmonella typhimurium ATCC 14028 bacterial strains; Candida albicans ATCC 10231 and Candida glabrata ATCC 90028 yeast strains; and Aspergillus brasiliensis ATCC 9642 fungal strain. In vivo biocompatibility testing of the collagen hydrolysate-chitosan/essential oil electrospun nanofibers was based on the determination of the hematological, biochemical, and immunological profile and the evaluation of the influence produced on the oxidative stress in white Swiss mice. The synergetic effect of dill and lemon balm EOs can improve the antimicrobial activity of collagen hydrolysate-chitosan nanofibers against the most important bacterial strains. The in vivo test results suggested a good biocompatibility of electrospun samples based on collagen hydrolysate extracted from bovine tendons or rabbit skin mixed with chitosan and containing dill and/or lemon balm essential oils as encapsulated bioactive compounds.
Collapse
|
14
|
Gupta P, Mishra P, Mehra L, Rastogi K, Prasad R, Mittal G, Poluri KM. Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute. Nanomedicine (Lond) 2021; 16:2269-2289. [PMID: 34569268 DOI: 10.2217/nnm-2021-0274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Fungal biofilms interfere with the wound healing processes. Henceforth, the study aims to fabricate a biomaterial-based nano-scaffold with the dual functionalities of wound healing and antibiofilm activity. Methods: Nanofibers comprising acacia gum, polyvinyl alcohol and inclusion complex of eugenol in β-cyclodextrin (EG-NF) were synthesized using electrospinning. Antibiofilm studies were performed on Candida species, and the wound-healing activity was evaluated through an in vivo excision wound rat model. Results: The EG-NF potentially eradicated the mature biofilm of Candida species and their clinical isolates. Further, EG-NF also enhanced the re-epithelization and speed of wound healing in in vivo rat experiments. Conclusion: The study established the bifunctional applications of eugenol nanofibers as a transdermal substitute with antifungal potency.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Purusottam Mishra
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Lalita Mehra
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Kartikey Rastogi
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Ramasare Prasad
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Gaurav Mittal
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Krishna Mohan Poluri
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
15
|
Nanotechnology Development for Formulating Essential Oils in Wound Dressing Materials to Promote the Wound-Healing Process: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041713] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wound healing refers to the replacement of damaged tissue through strongly coordinated cellular events. The patient’s condition and different types of wounds complicate the already intricate healing process. Conventional wound dressing materials seem to be insufficient to facilitate and support this mechanism. Nanotechnology could provide the physicochemical properties and specific biological responses needed to promote the healing process. For nanoparticulate dressing design, growing interest has focused on natural biopolymers due to their biocompatibility and good adaptability to technological needs. Polysaccharides are the most common natural biopolymers used for wound-healing materials. In particular, alginate and chitosan polymers exhibit intrinsic antibacterial and anti-inflammatory effects, useful for guaranteeing efficient treatment. Recent studies highlight that several natural plant-derived molecules can influence healing stages. In particular, essential oils show excellent antibacterial, antifungal, antioxidant, and anti-inflammatory properties that can be amplified by combining them with nanotechnological strategies. This review summarizes recent studies concerning essential oils as active secondary compounds in polysaccharide-based wound dressings.
Collapse
|
16
|
Aburayan WS, Booq RY, BinSaleh NS, Alfassam HA, Bakr AA, Bukhary HA, Alyamani EJ, Tawfik EA. The Delivery of the Novel Drug 'Halicin' Using Electrospun Fibers for the Treatment of Pressure Ulcer against Pathogenic Bacteria. Pharmaceutics 2020; 12:pharmaceutics12121189. [PMID: 33302338 PMCID: PMC7762391 DOI: 10.3390/pharmaceutics12121189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pressure ulcer or bedsore is a form of skin infection that commonly occurs with patients admitted to the hospital for an extended period of time, which might lead to severe complications in the absence of medical attention, resulting in infection either by drug-sensitive or drug-resistant bacteria. Halicin, a newly discovered drug effective against several bacterial strains, including multidrug-resistant bacteria, was investigated to reduce bacterial infection burden. This study aims to formulate halicin into electrospun fibers to be applied in bedsores as antibacterial dressing to assess its efficacy against gram-positive (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli and Acinetobacter baumannii) by studying the minimum inhibitory concentration (MIC) and bacterial zone of inhibition assays. The diameters of inhibition growth zones were measured, and the results have shown that the drug-loaded fibers were able to inhibit the growth of bacteria compared to the halicin discs. The release profile of the drug-loaded fibers exhibited a complete release of the drug after 2 h. The results demonstrated that the drug-loaded fibers could successfully release the drug while retaining their biological activity and they may be used as a potential antimicrobial dressing for patients with pressure ulcers caused by multidrug resistant bacteria.
Collapse
Affiliation(s)
- Walaa S. Aburayan
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (W.S.A.); (N.S.B.)
| | - Rayan Y. Booq
- National Center of Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (R.Y.B.); (A.A.B.)
| | - Nouf S. BinSaleh
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (W.S.A.); (N.S.B.)
| | - Haya A. Alfassam
- Center of Excellence for Biomedicine, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Abrar A. Bakr
- National Center of Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (R.Y.B.); (A.A.B.)
| | - Haitham A. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia;
| | - Essam J. Alyamani
- National Center of Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (R.Y.B.); (A.A.B.)
- Correspondence: (E.J.A.); (E.A.T.)
| | - Essam A. Tawfik
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia; (W.S.A.); (N.S.B.)
- Correspondence: (E.J.A.); (E.A.T.)
| |
Collapse
|
17
|
Râpă M, Gaidău C, Stefan LM, Matei E, Niculescu M, Berechet MD, Stanca M, Tablet C, Tudorache M, Gavrilă R, Predescu C, Vidu R. New Nanofibers Based on Protein By-Products with Bioactive Potential for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3149. [PMID: 32679796 PMCID: PMC7412532 DOI: 10.3390/ma13143149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022]
Abstract
Concentrated collagen hydrolysate (HC10CC), rabbit collagen glue (RCG), and keratin hydrolysate (KH) were investigated in terms of their extraction from mammalian by-products and processing by electrospinning. The electrospun nanofibers were characterized by scanning electron microscopy coupled with the energy dispersive X-ray spectroscopy (SEM/EDS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), and indentation tests. The cytotoxicity of the electrospun nanofibers was conducted on L929 fibroblast cells using MTT and LDH assays and cell morphology observations. The electrospun RCG and KH nanofibers morphology showed an average size of nanofibers ranging between 44 and 410 nm, while the electrospun HC10CC nanofibers exhibited higher sizes. The ATR-FTIR spectra performed both on extracted proteins and electrospun nanofibers showed that the triple helix structure of collagen is partially preserved. The results were in agreement with the circular dichroism analysis for protein extracts. Furthermore, the viscoelastic properties of electrospun KH nanofibers were superior to those of electrospun RCG nanofibers. Based on both in vitro quantitative and qualitative analysis, the electrospun nanofibers were not cytotoxic, inducing a healthy cellular response. The results of new electrospun protein-based nanofibers may be useful for further research on bioactive properties of these nanofibers for tissue engineering.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Material Sciences and Engineering, Politehnica University of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.); (R.V.)
| | - Carmen Gaidău
- National Research and Development Institute for Textiles and Leather- Division Leather and Footwear Research Institute, 031215 Bucharest, Romania; (M.N.); (M.D.B.); (M.S.)
| | - Laura Mihaela Stefan
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031 Bucharest, Romania;
| | - Ecaterina Matei
- Faculty of Material Sciences and Engineering, Politehnica University of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.); (R.V.)
| | - Mihaela Niculescu
- National Research and Development Institute for Textiles and Leather- Division Leather and Footwear Research Institute, 031215 Bucharest, Romania; (M.N.); (M.D.B.); (M.S.)
| | - Mariana Daniela Berechet
- National Research and Development Institute for Textiles and Leather- Division Leather and Footwear Research Institute, 031215 Bucharest, Romania; (M.N.); (M.D.B.); (M.S.)
| | - Maria Stanca
- National Research and Development Institute for Textiles and Leather- Division Leather and Footwear Research Institute, 031215 Bucharest, Romania; (M.N.); (M.D.B.); (M.S.)
| | - Cristina Tablet
- Department of Physical Chemistry, University of Bucharest, 4–12 Blvd. Regina Elisabeta, 030018 Bucharest, Romania; (C.T.); (M.T.)
- Faculty of Pharmacy, Titu Maiorescu University, Gh. Sincai Bd. 16, 040317 Bucharest, Romania
| | - Mădălina Tudorache
- Department of Physical Chemistry, University of Bucharest, 4–12 Blvd. Regina Elisabeta, 030018 Bucharest, Romania; (C.T.); (M.T.)
| | - Raluca Gavrilă
- Nano-scale Structuring and Characterization Laboratory, National Institute for R&D in Microtechnologies, 126A Erou Iancu Nicolae Street, R-077190 Voluntari, Romania;
| | - Cristian Predescu
- Faculty of Material Sciences and Engineering, Politehnica University of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.); (R.V.)
| | - Ruxandra Vidu
- Faculty of Material Sciences and Engineering, Politehnica University of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania; (M.R.); (E.M.); (C.P.); (R.V.)
- Department of Electrical and Computer Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|