1
|
Dudek K, Strach A, Wasilkowski D, Łosiewicz B, Kubisztal J, Mrozek-Wilczkiewicz A, Zioła P, Barylski A. Comparison of Key Properties of Ag-TiO 2 and Hydroxyapatite-Ag-TiO 2 Coatings on NiTi SMA. J Funct Biomater 2024; 15:264. [PMID: 39330239 PMCID: PMC11433350 DOI: 10.3390/jfb15090264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
To functionalize the NiTi alloy, multifunctional innovative nanocoatings of Ag-TiO2 and Ag-TiO2 doped with hydroxyapatite were engineered on its surface. The coatings were thoroughly characterized, focusing on surface topography and key functional properties, including adhesion, surface wettability, biocompatibility, antibacterial activity, and corrosion resistance. The electrochemical corrosion kinetics in a simulated body fluid and the mechanisms were analyzed. The coatings exhibited hydrophilic properties and were biocompatible with fibroblast and osteoblast cells while also demonstrating antibacterial activity against E. coli and S. epidermidis. The coatings adhered strongly to the NiTi substrate, with superior adhesion observed in the hydroxyapatite-doped layers. Conversely, the Ag-TiO2 layers showed enhanced corrosion resistance.
Collapse
Affiliation(s)
- Karolina Dudek
- Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Aleksandra Strach
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Bożena Łosiewicz
- Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Julian Kubisztal
- Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Anna Mrozek-Wilczkiewicz
- Department of Systems Biology and Engineering, Silesian University of Technology, Boleslawa Krzywoustego 8, 44-100 Gliwice, Poland
- August Chełkowski Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Patryk Zioła
- August Chełkowski Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
2
|
Dudek K, Dulski M, Podwórny J, Kujawa M, Gerle A, Rawicka P. Functionalization of the NiTi Shape Memory Alloy Surface through Innovative Hydroxyapatite/Ag-TiO 2 Hybrid Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:604. [PMID: 38591467 PMCID: PMC10856126 DOI: 10.3390/ma17030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 04/10/2024]
Abstract
The objective of this research was to develop a surface modification for the NiTi shape memory alloy, thereby enabling its long-term application in implant medicine. This was achieved through the creation of innovative multifunctional hybrid layers comprising a nanometric molecular system of silver-rutile (Ag-TiO2), known for its antibacterial properties, in conjunction with bioactive submicro- and nanosized hydroxyapatite (HAp). The multifunctional, continuous, crack-free coatings were produced using the electrophoretic deposition method (EPD) at 20 V/1 min. Structural and morphological analyses through Raman spectrometry and scanning electron microscopy (SEM) provided comprehensive insights into the obtained coating. The silver within the layer existed in the form of nanometric silver carbonates (Ag2CO3) and metallic nanosilver. Based on DTA/TG results, dilatometric measurements, and high-temperature microscopy, the heat treatment temperature for the deposited layers was set at 800 °C for 2 h. The procedures applied resulted in the creation of a new generation of materials with a distinct structure compared with the initial nanopowders. The resulting composite layer, measuring 2 μm in thickness, comprised hydroxyapatite (HAp), apatite carbonate (CHAp), metallic silver, silver oxides, Ag@C, and rutile exhibiting a defective structure. This structural characteristic contributes significantly to its heightened activity, influencing both bioactivity and biocompatibility properties.
Collapse
Affiliation(s)
- Karolina Dudek
- Łukasiewicz Research Network–Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland; (J.P.); (M.K.); (A.G.)
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Jacek Podwórny
- Łukasiewicz Research Network–Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland; (J.P.); (M.K.); (A.G.)
| | - Magdalena Kujawa
- Łukasiewicz Research Network–Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland; (J.P.); (M.K.); (A.G.)
| | - Anna Gerle
- Łukasiewicz Research Network–Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland; (J.P.); (M.K.); (A.G.)
| | - Patrycja Rawicka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland;
| |
Collapse
|
3
|
Łosiewicz B, Osak P, Górka-Kulikowska K. Electrophoretic Deposition of Multi-Walled Carbon Nanotube Coatings on CoCrMo Alloy for Biomedical Applications. MICROMACHINES 2023; 14:2122. [PMID: 38004979 PMCID: PMC10672882 DOI: 10.3390/mi14112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Carbon nanotubes are a promising material for use in innovative biomedical solutions due to their unique chemical, mechanical, electrical, and magnetic properties. This work provides a method for the development of ultrasonically assisted electrophoretic deposition of multi-walled carbon nanotubes on a CoCrMo dental alloy. Functionalization of multi-walled carbon nanotubes was carried out by chemical oxidation in a mixture of nitric and sulfuric acids. The modified and unmodified multi-walled carbon nanotubes were anaphoretically deposited on the CoCrMo alloy in an aqueous solution. Chemical composition was studied by Fourier transform infrared spectroscopy. Surface morphology was examined by scanning electron microscopy. The mechanism and kinetics of the electrochemical corrosion of the obtained coatings in artificial saliva at 37 °C were determined using the open-circuit potential method, electrochemical impedance spectroscopy, and anodic polarization curves. The capacitive behavior and high corrosion resistance of the tested electrodes were revealed. It was found that the kinetics of electrochemical corrosion of the CoCrMo electrode significantly decreased in the presence of the functionalized multi-walled carbon nanotube coating. Electrophoretic deposition was shown to be an effective, low-cost, and fast method of producing nanotubes with controlled thickness, homogeneity, and packing density.
Collapse
Affiliation(s)
- Bożena Łosiewicz
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Patrycja Osak
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - Karolina Górka-Kulikowska
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznań, Poland;
| |
Collapse
|
4
|
Łosiewicz B, Osak P, Górka-Kulikowska K, Goryczka T, Dworak M, Maszybrocka J, Aniołek K. Effect of Artificial Saliva Modification on Pitting Corrosion and Mechanical Properties of the Remanium ®-Type Orthodontic Archwire. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6791. [PMID: 37895772 PMCID: PMC10608180 DOI: 10.3390/ma16206791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The pitting corrosion of orthodontic apparatus elements in the oral environment is an interest of both clinicians and scientists dealing with the assessment of the biocompatibility of medical materials. This work presents a study on the effect of ready-to-use Listerine® and Meridol® mouthwashes and sodium fluoride on the resistance of the commercial Remanium®-type orthodontic archwire to pitting corrosion in artificial saliva at 37 °C. XRD, SEM, EDS, mechanical properties, and microhardness measurements were used to characterize the archwire. The in vitro corrosion resistance of the archwire was examined using the open-circuit potential method, electrochemical impedance spectroscopy, and anodic polarization curves. The physicochemical characteristics confirmed the presence of a bi-phase alloy with a mixed austenite/ferrite structure containing Fe 74.4(7) at.%, Cr 18.4(4) at.%, and Ni 7.2(4) at.%. The Fe-Cr-Ni alloy was characterized by high tensile strength and Vickers microhardness. EIS revealed the capacitive behavior with high corrosion resistance. It was found that the kinetics of pitting corrosion in the artificial saliva decreased in the presence of NaF and mouthwashes. The potentiodynamic characteristics confirmed the decrease in susceptibility to pitting corrosion after the modification of artificial saliva. The pitting corrosion mechanism of the self-passive oxide layer on the surface of the Fe-Cr-Ni electrode in the biological environment containing chloride ions was discussed in detail. Mechanical properties after corrosion tests were weakened.
Collapse
Affiliation(s)
- Bożena Łosiewicz
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland; (P.O.); (T.G.); (M.D.); (J.M.); (K.A.)
| | - Patrycja Osak
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland; (P.O.); (T.G.); (M.D.); (J.M.); (K.A.)
| | - Karolina Górka-Kulikowska
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Tomasz Goryczka
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland; (P.O.); (T.G.); (M.D.); (J.M.); (K.A.)
| | - Michał Dworak
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland; (P.O.); (T.G.); (M.D.); (J.M.); (K.A.)
| | - Joanna Maszybrocka
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland; (P.O.); (T.G.); (M.D.); (J.M.); (K.A.)
| | - Krzysztof Aniołek
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland; (P.O.); (T.G.); (M.D.); (J.M.); (K.A.)
| |
Collapse
|
5
|
Stróż A, Gawlikowski M, Balin K, Osak P, Kubisztal J, Zubko M, Maszybrocka J, Dudek K, Łosiewicz B. Biological Activity and Thrombogenic Properties of Oxide Nanotubes on the Ti-13Nb-13Zr Biomedical Alloy. J Funct Biomater 2023; 14:375. [PMID: 37504870 PMCID: PMC10382023 DOI: 10.3390/jfb14070375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
The success of implant treatment is dependent on the osseointegration of the implant. The main goal of this work was to improve the biofunctionality of the Ti-13Nb-13Zr implant alloy by the production of oxide nanotubes (ONTs) layers for better anchoring in the bone and use as an intelligent carrier in drug delivery systems. Anodization of the Ti-13Nb-13Zr alloy was carried out in 0.5% HF, 1 M (NH4)2SO4 + 2% NH4F, and 1 M ethylene glycol + 4 wt.% NH4F electrolytes. Physicochemical characteristics of ONTs were performed by high-resolution electron microscopy (HREM), X-ray photoelectron spectroscopy (XPS), and scanning Kelvin probe (SKP). Water contact angle studies were conducted using the sitting airdrop method. In vitro biological properties and release kinetics of ibuprofen were investigated. The results of TEM and XPS studies confirmed the formation of the single-walled ONTs of three generations on the bi-phase (α + β) Ti-13Nb-13Zr alloy. The ONTs were composed of oxides of the alloying elements. The proposed surface modification method ensured good hemolytic properties, no cytotoxity for L-929 mouse cells, good adhesion, increased surface wettability, and improved athrombogenic properties of the Ti-13Nb-13Zr alloy. Nanotubular surfaces allowed ibuprofen to be released from the polymer matrix according to the Gallagher-Corrigan model.
Collapse
Affiliation(s)
- Agnieszka Stróż
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Maciej Gawlikowski
- Faculty of Biomedical Engineering, Silesian University of Technology, 40 Roosevelt, 41-800 Zabrze, Poland
- Artificial Heart Laboratory, Professor Zbigniew Religa Foundation of Cardiac Surgery Development, 345a Wolności, 41-800 Zabrze, Poland
| | - Katarzyna Balin
- August Chełkowski Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Patrycja Osak
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Julian Kubisztal
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Maciej Zubko
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Joanna Maszybrocka
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Karolina Dudek
- Institute of Ceramics and Building Materials, Refractory Materials Center, Łukasiewicz Research Network, Toszecka 99, 44-100 Gliwice, Poland
| | - Bożena Łosiewicz
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
6
|
Stróż A, Luxbacher T, Dudek K, Chmiela B, Osak P, Łosiewicz B. In Vitro Bioelectrochemical Properties of Second-Generation Oxide Nanotubes on Ti-13Zr-13Nb Biomedical Alloy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1408. [PMID: 36837038 PMCID: PMC9966541 DOI: 10.3390/ma16041408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Surface charge and in vitro corrosion resistance are some of the key parameters characterizing biomaterials in the interaction of the implant with the biological environment. Hence, this work investigates the in vitro bioelectrochemical behavior of newly developed oxide nanotubes (ONTs) layers of second-generation (2G) on a Ti-13Zr-13Nb alloy. The 2G ONTs were produced by anodization in 1 M (NH4)2SO4 solution with 2 wt.% of NH4F. The physical and chemical properties of the obtained bamboo-inspired 2G ONTs were characterized using scanning electron microscopy with field emission and energy dispersive spectroscopy. Zeta potential measurements for the examined materials were carried out using an electrokinetic analyzer in aqueous electrolytes of potassium chloride, phosphate-buffered saline and artificial blood. It was found that the electrolyte type and the ionic strength affect the bioelectrochemical properties of 2G ONTs layers. Open circuit potential and anodic polarization curve results proved the influence of anodizing on the improvement of in vitro corrosion resistance of the Ti-13Zr-13Nb alloy in PBS solution. The anodizing conditions used can be proposed for the production of long-term implants, which are not susceptible to pitting corrosion up to 9.4 V.
Collapse
Affiliation(s)
- Agnieszka Stróż
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | | | - Karolina Dudek
- Refractory Materials Center, Institute of Ceramics and Building Materials, Łukasiewicz Research Network, Toszecka 99, 44-100 Gliwice, Poland
| | - Bartosz Chmiela
- Insitute of Materials Science, Silesian University of Technology, Z. Krasińskiego 8, 40-019 Katowice, Poland
| | - Patrycja Osak
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Bożena Łosiewicz
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
7
|
Stróż A, Maszybrocka J, Goryczka T, Dudek K, Osak P, Łosiewicz B. Influence of Anodizing Conditions on Biotribological and Micromechanical Properties of Ti-13Zr-13Nb Alloy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1237. [PMID: 36770242 PMCID: PMC9920400 DOI: 10.3390/ma16031237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The biomedical Ti-13Zr-13Nb bi-phase (α + β) alloy for long-term applications in implantology has recently been developed. The porous oxide nanotubes' (ONTs) layers of various geometries and lengths on the Ti-13Zr-13Nb alloy surface can be produced by anodizing to improve osseointegration. This work was aimed at how anodizing conditions determinatine the micromechanical and biotribological properties of the Ti-13Zr-13Nb alloy. First-generation (1G), second-generation (2G), and third-generation (3G) ONT layers were produced on the Ti-13Zr-13Nb alloy surface by anodizing. The microstructure was characterized using SEM. Micromechanical properties were investigated by the Vickers microhardness test under variable loads. Biotribological properties were examined in Ringer's solution in a reciprocating motion in the ball-on-flat system. The 2D roughness profiles method was used to assess the wear tracks of the tested materials. Wear scars' analysis of the ZrO2 ball was performed using optical microscopy. It was found that the composition of the electrolyte with the presence of fluoride ions was an essential factor influencing the micromechanical and biotribological properties of the obtained ONT layers. The three-body abrasion wear mechanism was proposed to explain the biotribological wear in Ringer's solution for the Ti-13Zr-13Nb alloy before and after anodizing.
Collapse
Affiliation(s)
- Agnieszka Stróż
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Joanna Maszybrocka
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Karolina Dudek
- Refractory Materials Center, Institute of Ceramics and Building Materials, Łukasiewicz Research Network, Toszecka 99, 44-100 Gliwice, Poland
| | - Patrycja Osak
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Bożena Łosiewicz
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
8
|
Pemmada R, Shrivastava A, Dash M, Cui K, Kumar P, Ramakrishna S, Zhou Y, Thomas V, Nanda HS. Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Korkmaz İH, Sağlam M. Determination of the Effect of TiN Coating on Self-Fitting Properties of Dental Implants Made of NiTi Alloy. ACS Biomater Sci Eng 2022; 8:4586-4595. [PMID: 36048733 DOI: 10.1021/acsbiomaterials.2c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Design and material research continues to increase dental implants' success rates, which is a widely applied treatment type. The size and morphology of the implant-bone interface are essential for implant stability. Our study produced a dental implant with two artificial tooth roots from NiTi alloy to increase the implant-bone contact surface. The properties of NiTi alloy, such as transformation temperature and composition, were determined by material characterization tests. Using NiTi alloy's shape memory effect, these artificial roots at body temperature were programmed with appropriate heat treatments for the self-fitting feature. Dental-implant-like models are coated with TiN to prevent Ni ion release. The corrosion tests were performed in Ringer's solution to determine the effect of TiN coating on Ni ion release. The nickel ion emission values showed that the TiN coating inhibited the release. In addition, it was determined that the TiN coating increased the shape memory transformation time of the NiTi alloy. In in vitro tests of NiTi and TiN-coated NiTi implants, it was observed that they completed self-fitting by deforming the trabecular bone, but the placement in the cortical bone was not complete. During the use of a shape memory implant, it should complete its transformation without contacting the cortical bone and should not cause a stress concentration.
Collapse
Affiliation(s)
- İsmail Hakkı Korkmaz
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalanı Yolu Cad. No:53 Yakutiye, Erzurum 25050, Turkey
| | - Miraç Sağlam
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalanı Yolu Cad. No:53 Yakutiye, Erzurum 25050, Turkey
| |
Collapse
|
10
|
OUP accepted manuscript. Metallomics 2022; 14:6515965. [DOI: 10.1093/mtomcs/mfac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022]
|
11
|
Łosiewicz B, Osak P, Maszybrocka J, Kubisztal J, Bogunia S, Ratajczak P, Aniołek K. Effect of Temperature on Electrochemically Assisted Deposition and Bioactivity of CaP Coatings on CpTi Grade 4. MATERIALS 2021; 14:ma14175081. [PMID: 34501171 PMCID: PMC8433821 DOI: 10.3390/ma14175081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/11/2023]
Abstract
Calcium phosphate (CaP) coatings are able to improve the osseointegration process due to their chemical composition similar to that of bone tissues. Among the methods of producing CaP coatings, the electrochemically assisted deposition (ECAD) is particularly important due to high repeatability and the possibility of deposition at room temperature and neutral pH, which allows for the co-deposition of inorganic and organic components. In this work, the ECAD of CaP coatings from an acetate bath with a Ca:P ratio of 1.67, was developed. The effect of the ECAD conditions on CaP coatings deposited on commercially pure titanium grade 4 (CpTi G4) subjected to sandblasting and autoclaving was presented. The physicochemical characteristics of the ECAD-derived coatings was carried out using SEM, EDS, FTIR, 2D roughness profiles, and amplitude sensitive eddy current method. It was showed that amorphous calcium phosphate (ACP) coatings can be obtained at a potential −1.5 to −10 V for 10 to 60 min at 20 to 70 °C. The thickness and surface roughness of the ACP coatings were an increasing function of potential, time, and temperature. The obtained ACP coatings are a precursor in the process of apatite formation in a simulated body fluid. The optimal ACP coating for use in dentistry was deposited at a potential of −3 V for 30 min at 20 °C.
Collapse
Affiliation(s)
- Bożena Łosiewicz
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (P.O.); (J.M.); (J.K.); (P.R.); (K.A.)
- Correspondence: ; Tel.: +48-32-3497-527
| | - Patrycja Osak
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (P.O.); (J.M.); (J.K.); (P.R.); (K.A.)
| | - Joanna Maszybrocka
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (P.O.); (J.M.); (J.K.); (P.R.); (K.A.)
| | - Julian Kubisztal
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (P.O.); (J.M.); (J.K.); (P.R.); (K.A.)
| | - Sylwia Bogunia
- Old Machar Medical Practice, 526-528 King Street, Aberdeen AB24 5RS, UK;
| | - Patryk Ratajczak
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (P.O.); (J.M.); (J.K.); (P.R.); (K.A.)
| | - Krzysztof Aniołek
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (P.O.); (J.M.); (J.K.); (P.R.); (K.A.)
| |
Collapse
|
12
|
Osak P, Maszybrocka J, Kubisztal J, Ratajczak P, Łosiewicz B. Long-Term Assessment of the In Vitro Corrosion Resistance of Biomimetic ACP Coatings Electrodeposited from an Acetate Bath. J Funct Biomater 2021; 12:12. [PMID: 33562425 PMCID: PMC7930999 DOI: 10.3390/jfb12010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
Calcium phosphate coatings are able to improve the osseointegration process due to their chemical composition, which is similar to that of bone tissues. In this work, to increase the long-term corrosion resistance and to improve the osseointegration process of commercially pure titanium Grade 4 (CpTi G4), biomimetic amorphous calcium phosphate (ACP) coatings were electrodeposited for the first time from an acetate bath with a pH level of 7.0 and a Ca:P ratio of 1.67. ACP coatings were obtained on CpTi G4 substrate subjected to sandblasting and autoclaving using electrochemically assisted deposition at a potential of -3 V relative to the open circuit potential for 30 min at room temperature. SEM, EDS, 2D roughness profiles, amplitude-sensitive eddy current method, and Kelvin scanning probe were used for the surface characterization of the biomaterial under study. In vitro corrosion resistance tests were conducted for 21 days in artificial saliva using open circuit potential, polarization curves, and electrochemical impedance spectroscopy measurements. The passive-transpassive behavior was revealed for the obtained ACP coatings. The long-term corrosion resistance test showed a deterioration of the protective properties for CpTi G4 uncoated and coated with ACP with immersion time. The mechanism and kinetics of the pitting corrosion on the CpTi G4|TiO2|ACP coating system are discussed in detail.
Collapse
Affiliation(s)
- Patrycja Osak
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (J.M.); (J.K.); (P.R.)
| | | | | | | | - Bożena Łosiewicz
- Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (J.M.); (J.K.); (P.R.)
| |
Collapse
|
13
|
Dulski M, Gawecki R, Sułowicz S, Cichomski M, Kazek-Kęsik A, Wala M, Leśniak-Ziółkowska K, Simka W, Mrozek-Wilczkiewicz A, Gawęda M, Sitarz M, Dudek K. Key Properties of a Bioactive Ag-SiO 2/TiO 2 Coating on NiTi Shape Memory Alloy as Necessary at the Development of a New Class of Biomedical Materials. Int J Mol Sci 2021; 22:E507. [PMID: 33419163 PMCID: PMC7825542 DOI: 10.3390/ijms22020507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Recent years have seen the dynamic development of methods for functionalizing the surface of implants using biomaterials that can mimic the physical and mechanical nature of native tissue, prevent the formation of bacterial biofilm, promote osteoconduction, and have the ability to sustain cell proliferation. One of the concepts for achieving this goal, which is presented in this work, is to functionalize the surface of NiTi shape memory alloy by an atypical glass-like nanocomposite that consists of SiO2-TiO2 with silver nanoparticles. However, determining the potential medical uses of bio(nano)coating prepared in this way requires an analysis of its surface roughness, tribology, or wettability, especially in the context of the commonly used reference coat-forming hydroxyapatite (HAp). According to our results, the surface roughness ranged between (112 ± 3) nm (Ag-SiO2)-(141 ± 5) nm (HAp), the water contact angle was in the range (74.8 ± 1.6)° (Ag-SiO2)-(70.6 ± 1.2)° (HAp), while the surface free energy was in the range of 45.4 mJ/m2 (Ag-SiO2)-46.8 mJ/m2 (HAp). The adhesive force and friction coefficient were determined to be 1.04 (Ag-SiO2)-1.14 (HAp) and 0.247 ± 0.012 (Ag-SiO2) and 0.397 ± 0.034 (HAp), respectively. The chemical data showed that the release of the metal, mainly Ni from the covered NiTi substrate or Ag from Ag-SiO2 coating had a negligible effect. It was revealed that the NiTi alloy that was coated with Ag-SiO2 did not favor the formation of E. coli or S. aureus biofilm compared to the HAp-coated alloy. Moreover, both approaches to surface functionalization indicated good viability of the normal human dermal fibroblast and osteoblast cells and confirmed the high osteoconductive features of the biomaterial. The similarities of both types of coat-forming materials indicate an excellent potential of the silver-silica composite as a new material for the functionalization of the surface of a biomaterial and the development of a new type of functionalized implants.
Collapse
Affiliation(s)
- Mateusz Dulski
- Institute of Materials Engineering, Faculty of Computer Science and Materials Science and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Robert Gawecki
- A. Chełkowski Institute of Physics, Faculty of Computer Science and Materials Science and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; (R.G.); (A.M.-W.)
| | - Sławomir Sułowicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| | - Michal Cichomski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland;
| | - Alicja Kazek-Kęsik
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland; (A.K.-K.); (M.W.); (K.L.-Z.); (W.S.)
| | - Marta Wala
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland; (A.K.-K.); (M.W.); (K.L.-Z.); (W.S.)
| | - Katarzyna Leśniak-Ziółkowska
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland; (A.K.-K.); (M.W.); (K.L.-Z.); (W.S.)
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland; (A.K.-K.); (M.W.); (K.L.-Z.); (W.S.)
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics, Faculty of Computer Science and Materials Science and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; (R.G.); (A.M.-W.)
| | - Magdalena Gawęda
- Faculty of Materials Science & Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland; (M.G.); (M.S.)
| | - Maciej Sitarz
- Faculty of Materials Science & Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland; (M.G.); (M.S.)
| | - Karolina Dudek
- Refractory Materials Division in Gliwice, Łukasiewicz Research Network—Institute of Ceramics and Building Materials, Toszecka 99, 44-100 Gliwice, Poland
| |
Collapse
|
14
|
Dulski M, Balcerzak J, Simka W, Dudek K. Innovative Bioactive Ag-SiO 2/TiO 2 Coating on a NiTi-Shape Memory Alloy: Structure and Mechanism of Its Formation. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E99. [PMID: 33383620 PMCID: PMC7794940 DOI: 10.3390/ma14010099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
In recent years, more and more emphasis has been placed on the development and functionalization of metallic substrates for medical applications to improve their properties and increase their applicability. Today, there are many different types of approaches and materials that are used for this purpose. Our idea was based on a combination of a chemically synthesized Ag-SiO2 nanocomposite and the electrophoretic deposition approach on a NiTi-shape memory substrate. As a result, silver-silica coating was developed on a previously passivated alloy, which was then subjected to sintering at 700 °C for 2 h. The micrometer-sized coat-forming material was composed of large agglomerates consisting of silica and a thin film of submicron- and nano- spherical-shaped particles built of silver, carbon, and oxygen. Structurally, the coatings consisted of a combination of nanometer-sized silver-carbonate that was embedded in thin amorphous silica and siloxy network. The temperature impact had forced morphological and structural changes such as the consolidation of the coat-forming material, and the partial coalescence of the silver and silica particles. As a result, a new continuous complex ceramic coating was formed and was analyzed in more detail using the XPS, XRD, and Raman methods. According to the structural and chemical analyses, the deposited Ag-SiO2 nanocomposite material's reorganization was due to its reaction with a passivated TiO2 layer, which formed an atypical glass-like composite that consisted of SiO2-TiO2 with silver particles that stabilized the network. Finally, the functionalization of the NiTi surface did not block the shape memory effect.
Collapse
Affiliation(s)
- Mateusz Dulski
- Institute of Materials Engineering, University of Silesia and Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Jacek Balcerzak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland;
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland;
| | - Karolina Dudek
- Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Toszecka 99, 44-100 Gliwice, Poland
| |
Collapse
|