1
|
Candia-Lomeli M, Delgado-Cano B, Heitz M, Avalos-Ramirez A, Arriaga S. Greenhouse gases capture applying impregnated silica with ionic liquids, deep eutectic solvents, and natural deep eutectic solvents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3212-3226. [PMID: 38683427 DOI: 10.1007/s11356-024-33485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The development of technologies to capture greenhouse gases (GHGs) like carbon dioxide (CO2) and nitrous oxide (N2O) is vital for climate change mitigation. Ionic liquids (ILs), deep eutectic solvents (DES), and natural deep eutectic solvents (NADES) are promising absorbents to abate GHGs emissions. However, their high viscosity limits the gas-liquid contact, as consequence of the mass transfer. To overcome this, their impregnation onto porous silica gel has been carried out, increasing the gas-liquid contact area. The present study analyzes the effect of size particle of silica gel impregnated with ILs, DES, and NADES over the CO2 and N2O capture at atmospheric conditions. The degree of impregnation of silica particles was determined by thermogravimetric analysis (TGA). The identification of functional groups present on the surface of silica, ILs, DES, and NADES was performed using Fourier-transform infrared spectroscopy (FTIR), and their crystalline structure was determined by X-ray diffraction (XRD). The partition coefficient of CO2 and N2O between gas and ILs, DES, and NADES was determined by a static headspace method. Results show that the degree of solvent impregnation on silica gel ranged from 36.8 to 43.0% w/w, the partition coefficient of CO2 in the impregnated silica varied from 0.005 to 0.067, and for N2O, from 0.005 to 0.032. This suggests that impregnated particles have a greater affinity for N2O compared to CO2. Using impregnated particles requires only 40% of the bulk solvent to achieve a similar GHG capture capacity compared to using bulk solvents.
Collapse
Affiliation(s)
- Mariana Candia-Lomeli
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055. Col. Lomas 4a. Sección, CP. 78216, San Luis Potosí, S.L.P, Mexico
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Beatriz Delgado-Cano
- Centre National en Électrochimie Et en Technologies Environnementales, 2263 Avenue du Collège, Shawinigan, QC, G9N 6V8, Canada
| | - Michelle Heitz
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Antonio Avalos-Ramirez
- Centre National en Électrochimie Et en Technologies Environnementales, 2263 Avenue du Collège, Shawinigan, QC, G9N 6V8, Canada
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Sonia Arriaga
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa San José 2055. Col. Lomas 4a. Sección, CP. 78216, San Luis Potosí, S.L.P, Mexico.
| |
Collapse
|
2
|
Makoś-Chełstowska P, Słupek E, Gębicki J. Agri-food waste biosorbents for volatile organic compounds removal from air and industrial gases - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173910. [PMID: 38880149 DOI: 10.1016/j.scitotenv.2024.173910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Approximately 1.3 billion metric tons of agricultural and food waste is produced annually, highlighting the need for appropriate processing and management strategies. This paper provides an exhaustive overview of the utilization of agri-food waste as a biosorbents for the elimination of volatile organic compounds (VOCs) from gaseous streams. The review paper underscores the critical role of waste management in the context of a circular economy, wherein waste is not viewed as a final product, but rather as a valuable resource for innovative processes. This perspective is consistent with the principles of resource efficiency and sustainability. Various types of waste have been described as effective biosorbents, and methods for biosorbents preparation have been discussed, including thermal treatment, surface activation, and doping with nitrogen, phosphorus, and sulfur atoms. This review further investigates the applications of these biosorbents in adsorbing VOCs from gaseous streams and elucidates the primary mechanisms governing the adsorption process. Additionally, this study sheds light on methods of biosorbents regeneration, which is a key aspect of practical applications. The paper concludes with a critical commentary and discussion of future perspectives in this field, emphasizing the need for more research and innovation in waste management to fully realize the potential of a circular economy. This review serves as a valuable resource for researchers and practitioners interested in the potential use of agri-food waste biosorbents for VOCs removal, marking a significant first step toward considering these aspects together.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland.
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
3
|
Dangre P, Avhad P, Gurumukhi V, Katolkar U, Chalikwar S. Solidification of deep eutectic solvent containing fimasartan through wet impregnation and exploration of flow attributes by modified SeDeM-SLA expert system. Eur J Pharm Biopharm 2024; 201:114381. [PMID: 38917948 DOI: 10.1016/j.ejpb.2024.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
The solidification of deep eutectic solvent (DES) through wet impregnation techniques on inert solid carriers is an interesting approach that offers better processing attributes and excellent stability. Herein, DES of Fimasartan (FS) was developed to improve its solubility and bioavailability. The selected DES-FS was solidified by wet impregnation method employing Nesulin US2 and Aerosil 200. The SeDeM-SLA (solid-liquid adsorption) system was employed to investigate flow attributes of solidified DES-FS. Further, the selected solidified DES-FS (A) was characterized by Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (PXRD), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM). The DES comprising Choline Chloride (ChCl): Glycerol (Gly) (1:3) revealed maximum drug solubility (35.6 ± 2.2 mg/mL) and thus opted for solidification. Solidification through wet impregnation was employed using 1:0.5 ratios (DES-FS to carriers). The Index of Good Flow (IGF) value was calculated from the SeDeM-SLA expert system, which indicates the better flow characteristics of solidified DES-FS, particularly with Neusilin US2 [SDES-FS (A)]. The solid-state evaluation data of SDS-FS (A) suggested a transition of FS to an amorphous form, resulting in an increment in solubility and dissolution. A similar trend was reported in the in vivo pharmacokinetic study, which indicated a 2.9 folds increment in the oral bioavailability of FS. Furthermore, excellent stability, i.e., a shelf life of 28.44 months, reported by SDES-FS (A) in accelerated stability studies, suggests better formulation perspectives. In a nutshell, the present study evokes the potentiality of performing solidification through wet impregnation and successful implementation of the SeDeM-SLA expert model, which could find wide applications in pharmaceutical science.
Collapse
Affiliation(s)
- Pankaj Dangre
- Department of Pharmaceutics, K K Wagh College of Pharmacy, Nashik, Maharashtra, India; Department of Industrial Pharmacy & Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Pratibha Avhad
- Department of Industrial Pharmacy & Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Vishal Gurumukhi
- Department of Quality Assurance, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, Maharashtra, India
| | - Ujwal Katolkar
- Department of Pharmacology, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Shailesh Chalikwar
- Department of Industrial Pharmacy & Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
| |
Collapse
|
4
|
Cao S, Huang J, Tian J, Liu Z, Su H, Chen Z. Deep insight into selective adsorption behavior and mechanism of novel deep eutectic solvent functionalized bio-sorbent towards methcathinone: Experiments and DFT calculation. ENVIRONMENTAL RESEARCH 2023; 227:115792. [PMID: 36997045 DOI: 10.1016/j.envres.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
This work designed and synthesized novelly selective, highly efficient and friendly environmental biochar nanomaterial (ZMBC@ChCl-EG) by screening suitable deep eutectic solvent (DES) as the functional monomer via Density Functional Theory (DFT). The prepared ZMBC@ChCl-EG achieved the highly efficient adsorption of methcathinone (MC) and exhibited excellent selectivity as well as good reusability. Selectivity analysis concluded that the distribution coefficient value (KD) of ZMBC@ChCl-EG towards MC was 3.247 L/g, which was about 3 times higher than that of ZMBC, corresponding to stronger selective adsorption capacity. The studies of isothermal and kinetics indicated that ZMBC@ChCl-EG had an excellent adsorption capacity towards MC and the adsorption was mainly chemically controlled. In addition, DFT was used to calculate the binding energies between MC and each component. The binding energies were -10.57 kcal/mol for ChCl-EG/MC, -3.15∼-9.51 kcal/mol for BCs/MC, -2.33 kcal/mol for ZIF-8/MC, respectively, suggesting that DES played a major role in enhancing methcathinone adsorption. Lastly, the adsorption mechanisms were revealed by variables experiment combined with characterizations and DFT calculation. The main mechanisms were hydrogen bonding and π-π interaction.
Collapse
Affiliation(s)
- Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Jing Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Tian
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Hongtao Su
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
5
|
Liu Y, Cao S, Liu Z, Wu D, Luo M, Chen Z. Adsorption of amphetamine on deep eutectic solvents functionalized graphene oxide/metal-organic framework nanocomposite: Elucidation of hydrogen bonding and DFT studies. CHEMOSPHERE 2023; 323:138276. [PMID: 36863627 DOI: 10.1016/j.chemosphere.2023.138276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The efficient and selective removal of amphetamine (AMP) from water bodies is significant for environmental remediation. In this study, a novel strategy for screening deep eutectic solvent (DES) functional monomers was proposed based on density functional theory (DFT) calculations. Using magnetic GO/ZIF-67 (ZMG) as substrates, three DES-functionalized adsorbents (ZMG-BA, ZMG-FA, and ZMG-PA) were successfully synthesized. The isothermal results showed that the DES-functionalized materials introduced more adsorption sites and mainly contributed to the formation of hydrogen bonds. The order of the maximum adsorption capacity (Qm) was as follows: ZMG-BA (732.110 μg⋅g-1) > ZMG-FA (636.518 μg⋅g-1) > ZMG-PA (564.618 μg⋅g-1) > ZMG (489.913 μg⋅g-1). The adsorption rate of AMP on ZMG-BA was the highest (98.1%) at pH 11, which could be explained by the less protonation of -NH2 from AMP being more favorable for forming hydrogen bonds with the -COOH of ZMG-BA. The strongest affinity of the -COOH of ZMG-BA for AMP was reflected in the most hydrogen bonds and the shortest bond length. The hydrogen bonding adsorption mechanism was fully explained by experimental characterization (FT-IR, XPS) and DFT calculations. Frontier Molecular Orbital (FMO) calculations showed that ZMG-BA had the lowest HOMO-LUMO energy gap (Egap), the highest chemical activity and the best adsorption capability. The experimental results agreed with the results of theoretical calculations, proving the validity of the functional monomer screening method. This research offered fresh suggestions for the functionalized modification of carbon nanomaterials to achieve effective and selective adsorption for psychoactive substances.
Collapse
Affiliation(s)
- Yujie Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shurui Cao
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China; Criminal Investigation Law School, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhenghong Liu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Duanhao Wu
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Mengni Luo
- Forensic Identification Center, Southwest University of Political Science and Law, Chongqing, 401120, China
| | - Zhiqiong Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Magnetic deep eutectic solvents – Fundamentals and applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Vohra M, Hussaini M, Mohammad T. Olive branches activated carbon: synthesis, phenol adsorption and modeling. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Green monoterpenes based deep eutectic solvents for effective BTEX absorption from biogas. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Wu M, Bai Y, Wang Q, Wang G. Silica-gel-supported deep eutectic solvent (DES) as an efficient novel catalytic system for synthesis of 1,10-phenanthroline. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04726-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Makoś-Chełstowska P, Słupek E, Małachowska A. Superhydrophobic sponges based on green deep eutectic solvents for spill oil removal from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127972. [PMID: 34891017 DOI: 10.1016/j.jhazmat.2021.127972] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
The paper described a new method for crude oil-water separation by means of superhydrophobic melamine sponges impregnated by deep eutectic solvents (MS-DES). Due to the numerous potential of two-component DES formation, simple and quick screening of 156 non-ionic deep eutectic solvents using COSMO-RS (Conductor-like Screening Model for Real Solvents) computational model was used. DES which were characterized by high solubility of hydrocarbons and the lowest water solubility were synthesized and embedded on melamine sponges. The new sponges were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and goniometer. Several parameters affecting the crude oil-water separation (i.e. type and amount of DES, density and porosity of sponges, water contact eagle) were thoroughly studied. In order to studies of MS-DES affinity to the selected groups of crude oil i.e. Saturated, Aromatic, Resins, Asphaltenes (SARA) the thin layer liquid chromatography-flame ionization detection (TLC-FID) was used. The obtained results indicate that the melamine sponges impregnated by DES composed of eucalyptol and menthol in 1:5 molar ratio have high real crude oil absorption capacity in the range of 96.1 - 132.2 g/g and slightly depends on crude oil compositions, superhydrophobic properties (water contact angle 152°), low density of 9.23 mg/cm3, high porosity of 99.39%, and excellent reusability which was almost not changing even after 80 cycles. The outcomes indicate that new MS-DES materials could be excellent alternatives as absorbents for the cleanup of crude oil-polluted water.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Aleksandra Małachowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
11
|
Li P, Huang D, Tang J, Zhang P, Meng F. Silica gel impregnated with deep eutectic solvent-based matrix solid-phase dispersion followed by high-performance liquid chromatography for extraction and detection of triazine herbicides in brown sugar. Anal Bioanal Chem 2022; 414:3497-3505. [PMID: 35169904 DOI: 10.1007/s00216-022-03970-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/22/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
A novel method was developed to determine six triazine herbicides from brown sugar samples using matrix solid-phase dispersion (MSPD) based on silica gel impregnated with deep eutectic solvent (DES) followed by high-performance liquid chromatography with photodiode array detector (HPLC/PDA). Several factors involved in the MSPD procedure such as DES type, DES content in impregnated silica gel, adsorbent-to-sample mass ratio, type and volume of washing solvent, type and volume of eluent, and grinding time were screened using single-factor experiments and then optimized using Box-Behnken design to accomplish the highest recoveries. The above method demonstrated a good linear range (20-1000 μg kg-1) with a determination coefficient exceeding 0.9962, low limits of determination (1.59-3.77 μg kg-1), acceptable limits of quantifications, and acceptable spiking recoveries (95.0-101.7%) for six triazines under optimized conditions. The proposed MSPD-HPLC/PDA method is a convenient, effective, and sensitive method for rapidly isolating and quantifying six triazines from brown sugar.
Collapse
Affiliation(s)
- Peng Li
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China.,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China
| | - Dongting Huang
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China.,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China
| | - Jingjie Tang
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China.,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China
| | - Pingjun Zhang
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China.,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China
| | - Fei Meng
- Institute of Bioengineering and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, People's Republic of China. .,Guangdong Engineering Research Center for Sugar Technology, Guangzhou, 510316, People's Republic of China.
| |
Collapse
|
12
|
Makoś-Chełstowska P, Słupek E, Kramarz A, Gębicki J. New Carvone-Based Deep Eutectic Solvents for Siloxanes Capture from Biogas. Int J Mol Sci 2021; 22:ijms22179551. [PMID: 34502455 PMCID: PMC8431123 DOI: 10.3390/ijms22179551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/24/2023] Open
Abstract
During biogas combustion, siloxanes form deposits of SiO2 on engine components, thus shortening the lifespan of the installation. Therefore, the development of new methods for the purification of biogas is receiving increasing attention. One of the most effective methods is physical absorption with the use of appropriate solvents. According to the principles of green engineering, solvents should be biodegradable, non-toxic, and have a high absorption capacity. Deep eutectic solvents (DES) possess such characteristics. In the literature, due to the very large number of DES combinations, conductor-like screening models for real solvents (COSMO-RS), based on the comparison of siloxane activity coefficient of 90 DESs of various types, were studied. DESs, which have the highest affinity to siloxanes, were synthesized. The most important physicochemical properties of DESs were carefully studied. In order to explain of the mechanism of DES formation, and the interaction between DES and siloxanes, the theoretical studies based on σ-profiles, and experimental studies including the 1H NMR, 13C NMR, and FT-IR spectra, were applied. The obtained results indicated that the new DESs, which were composed of carvone and carboxylic acids, were characterized by the highest affinity to siloxanes. It was shown that the hydrogen bonds between the active ketone group (=O) and the carboxyl group (-COOH) determined the formation of stable DESs with a melting point much lower than those of the individual components. On the other hand, non-bonded interactions mainly determined the effective capture of siloxanes with DES.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.M.-C.); (E.S.); (A.K.)
- EcoTech Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.M.-C.); (E.S.); (A.K.)
| | - Aleksandra Kramarz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.M.-C.); (E.S.); (A.K.)
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.M.-C.); (E.S.); (A.K.)
- Correspondence:
| |
Collapse
|
13
|
Słupek E, Makoś-Chełstowska P, Gębicki J. Removal of Siloxanes from Model Biogas by Means of Deep Eutectic Solvents in Absorption Process. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E241. [PMID: 33418968 PMCID: PMC7825351 DOI: 10.3390/ma14020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
The paper presents the screening of 20 deep eutectic solvents (DESs) composed of tetrapropylammonium bromide (TPABr) and glycols in various molar ratios, and 6 conventional solvents as absorbents for removal of siloxanes from model biogas stream. The screening was achieved using the conductor-like screening model for real solvents (COSMO-RS) based on the comparison of siloxane solubility in DESs. For the DES which was characterized by the highest solubility of siloxanes, studies of physicochemical properties, i.e., viscosity, density, and melting point, were performed. DES composed of tetrapropylammonium bromide (TPABr) and tetraethylene glycol (TEG) in a 1:3 molar ratio was used as an absorbent in experimental studies in which several parameters were optimized, i.e., the temperature, absorbent volume, and model biogas flow rate. The mechanism of siloxanes removal was evaluated by means of an experimental FT-IR analysis as well as by theoretical studies based on σ-profile and σ-potential. On the basis of the obtained results, it can be concluded that TPABr:TEG (1:3) is a very effective absorption solvent for the removal of siloxanes from model biogas, and the main driving force of the absorption process is the formation of the hydrogen bonds between DES and siloxanes.
Collapse
Affiliation(s)
| | - Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland; (E.S.); (J.G.)
| | | |
Collapse
|
14
|
Theoretical and Economic Evaluation of Low-Cost Deep Eutectic Solvents for Effective Biogas Upgrading to Bio-Methane. ENERGIES 2020. [DOI: 10.3390/en13133379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents the theoretical screening of 23 low-cost deep eutectic solvents (DESs) as absorbents for effective removal of the main impurities from biogas streams using a conductor-like screening model for real solvents (COSMO-RS). Based on thermodynamic parameters, i.e., the activity coefficient, excess enthalpy, and Henry’s constant, two DESs composed of choline chloride: urea in a 1:2 molar ratio (ChCl:U 1:2), and choline chloride: oxalic acid in a 1:2 molar ratio (ChCl:OA 1:2) were selected as the most effective absorbents. The σ-profile and σ-potential were used in order to explain the mechanism of the absorptive removal of CO2, H2S, and siloxanes from a biogas stream. In addition, an economic analysis was prepared to demonstrate the competitiveness of new DESs in the sorbents market. The unit cost of 1 m3 of pure bio-methane was estimated to be in the range of 0.35–0.37 EUR, which is comparable to currently used technologies.
Collapse
|