1
|
Khajvand M, Drogui P, Arab H, Tyagi RD, Brien E. Hybrid process combining ultrafiltration and electro-oxidation for COD and nonylphenol ethoxylate removal from industrial laundry wastewater. CHEMOSPHERE 2024; 363:142931. [PMID: 39053780 DOI: 10.1016/j.chemosphere.2024.142931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Laundry wastewater is a significant source of nonylphenol ethoxylate (NPEO) at wastewater treatment plants, where its breakdown forms persistent nonylphenol (NP). NP poses risks as an endocrine disruptor in wildlife and humans. This study investigates the degradation of NPEO and COD in industrial laundry wastewater (LWW) using a two-stage process combining ultrafiltration (UF) and electro-oxidation (EO). UF was used to remove suspended solids, while soluble COD (COD0 = 239 ± 6 mg.L-1) and NPEO (NPEO0 = 341 ± 8 μg.L-1) were oxidized by the EO process. Different operating parameters were studied such as current density, electrolysis time, type of cathode and supporting electrolyte concentration. Using an experimental design methodology, the optimal conditions for COD and NPEO3-17 degradation were recorded. This included achieving 97% degradation of NPEO3-17 and 61% degradation of COD, with a total operating cost of 3.65 USD·m-3. These optimal conditions were recorded at a current density of 15 mA cm-2 for a 120-min reaction period in the presence of 4 g·Na2SO4 L-1 using a graphite cathode. The EO process allowed for reaching the guidelines required for water reuse (NPEO <200 μg.L-1, COD <100 mg.L-1) in the initial laundry washing cycles. Furthermore, our results demonstrate that both NP and NPEO compounds, including higher and shorter ethoxylate chains (NPEO3-17), were effectively degraded during the EO process, with removal efficiencies between 94% and 98%. This confirms the EO process's capability to effectively degrade NP, the by-product of NPEO breakdown.
Collapse
Affiliation(s)
- Mahdieh Khajvand
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Patrick Drogui
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada.
| | - Hamed Arab
- Institut National de La Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université Du Québec, 490 Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Rajeshwar Dayal Tyagi
- Research Centre for Eco-Environmental Engineering, Dongguan University of Technology, China; BOSK Bioproducts, Québec, Québec, Canada
| | - Emmanuel Brien
- Groupe Veos Inc, 1552 Rue Nationale, Terrebonne, Québec, J6W 6M1, Canada
| |
Collapse
|
2
|
Bourli P, Eslahi AV, Tzoraki O, Karanis P. Waterborne transmission of protozoan parasites: a review of worldwide outbreaks - an update 2017-2022. JOURNAL OF WATER AND HEALTH 2023; 21:1421-1447. [PMID: 37902200 PMCID: wh_2023_094 DOI: 10.2166/wh.2023.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The current study presents a comprehensive review of worldwide waterborne parasitic protozoan outbreaks reported between 2017 and 2022. In total, 416 outbreaks were attributed to the waterborne transmission of parasitic protozoa. Cryptosporidium accounted for 77.4% (322) of outbreaks, while Giardia was identified as the etiological agent in 17.1% (71). Toxoplasma gondii and Naegleria fowleri were the primary causes in 1.4% (6) and 1% (4) of outbreaks, respectively. Blastocystis hominis, Cyclospora cayetanensis, and Dientamoeba fragilis were independently identified in 0.72% (3) of outbreaks. Moreover, Acanthamoeba spp., Entamoeba histolytica, Vittaforma corneae, and Enterocytozoon bieneusi were independently the causal agents in 0.24% (1) of the total outbreaks. The majority of the outbreaks (195, 47%) were reported in North America. The suspected sources for 313 (75.2%) waterborne parasitic outbreaks were recreational water and/or swimming pools, accounting for 92% of the total Cryptosporidium outbreaks. Furthermore, 25.3% of the outbreaks caused by Giardia were associated with recreational water and/or swimming pools. Developing countries are most likely to be impacted by such outbreaks due to the lack of reliable monitoring strategies and water treatment processes. There is still a need for international surveillance and reporting systems concerning both waterborne diseases and water contamination with parasitic protozoa.
Collapse
Affiliation(s)
- Pavlina Bourli
- School of the Environment, Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos 81100, Greece E-mail:
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ourania Tzoraki
- School of the Environment, Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos 81100, Greece
| | - Panagiotis Karanis
- Medical Faculty and University Hospital, University of Cologne, Cologne, Germany; Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
3
|
Cetinkaya Atesci Z, Inan H. Removal of microfiber and surfactants from household laundry washing effluents by powdered activated carbon: kinetics and isotherm studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1578-1593. [PMID: 37768756 PMCID: wst_2023_281 DOI: 10.2166/wst.2023.281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Domestic laundry wastewater discharge contributes significantly to the presence of microfiber and surfactant pollutants in aquatic ecosystems, which have detrimental and toxic effects on humans and the environment. Investigating the efficacy of powdered activated carbon (PAC) in removing micro-/nanofibers with or without surfactant from household laundry effluent is the purpose of the current research. To simulate real-world scenarios, PAC adsorption kinetics and isotherms in laundry effluents under controlled conditions were studied. These studies showed that the kinetics obeyed a pseudo-second-order process and the isotherms varied between Langmuir and Freundlich models depending on the water types. In the results of experiments using distilled water and tap water, it was observed that the adsorption capacity was higher in tap water. When the adsorption of 0.1 μm filtered synthetic garments, detergent, and tap water was compared with the adsorption of the raw sample, it was observed that the adsorption capacity of the 0.1 μm filtered version was higher. Even though this study is preliminary, the results indicate that PAC has the capacity to serve as a viable approach for mitigating micro-/nanoplastic and surfactant contamination from laundry wastewater, thereby offering valuable guidance for advancing eco-friendly laundry techniques.
Collapse
Affiliation(s)
- Zuhal Cetinkaya Atesci
- Environmental Engineering Department, Gebze Technical University, Cayırova, Kocaeli 41400, Turkey E-mail:
| | - Hatice Inan
- Environmental Engineering Department, Gebze Technical University, Cayırova, Kocaeli 41400, Turkey
| |
Collapse
|
4
|
Khajvand M, Mostafazadeh AK, Drogui P, Tyagi RD. Management of greywater: environmental impact, treatment, resource recovery, water recycling, and decentralization. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:909-937. [PMID: 36358037 DOI: 10.2166/wst.2022.226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater generated from households can be classified into greywater and blackwater. Greywater makes up a substantial portion of household wastewater. Such water consists of wastewater released from kitchen sinks, showers, laundries, and hand basins. Since the greywater is not mixed with human excreta and due to the low levels of pathogenic contamination and nitrogen, it has received more attention for recycling and reusing in recent decades. Implementing decentralized greywater treatment systems can be an effective solution to overcome water scarcity by supplying a part of water requirement, at least non-potable demand, and decreasing pollutant emissions by eliminating long-distance water transportation in remote regions, like rural and isolated areas. This review focuses on greywater management in terms of reducing environmental risks as well as the possibility of treatment. Effective management of water reclamation systems is essential for a decentralized approach and to ensure the protection of public health. In this regard, the environmental impacts of disposal or reusing the untreated greywater are discussed. Furthermore, the most appropriate technologies that can be employed for the decentralized treatment of greywaters like constructed wetlands, waste stabilization ponds, membrane systems, and electrochemical technologies are described. Finally, this review summarizes resource recovery and sustainable resource reuse.
Collapse
Affiliation(s)
- Mahdieh Khajvand
- Institut National de la Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université du Québec, Québec, Canada E-mail:
| | | | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS), Centre-Eau Terre Environnement (ETE), Université du Québec, Québec, Canada E-mail:
| | - Rajeshwar Dayal Tyagi
- School of Technology, Huzhou University, Huzhou, Zhejiang, China; BOSK Bioproducts, Québec, Québec, Canada
| |
Collapse
|
5
|
Limousy L, Thiebault T, Brendle J. New Materials and Technologies for Wastewater Treatment. MATERIALS 2022; 15:ma15051927. [PMID: 35269160 PMCID: PMC8911897 DOI: 10.3390/ma15051927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Lionel Limousy
- Institut de Science des Matériaux de Mulhouse, UMR CNRS 7361, Université de Haute-Alsace, Université de Strasbourg, 3b Rue Alfred Werner, F-68100 Mulhouse, France;
- Correspondence:
| | - Thomas Thiebault
- Ecole Pratique des Hautes Etudes, UMR CNRS METIS 7619, PSL Université, 4 Place Jussieu, F-75252 Paris, France;
| | - Jocelyne Brendle
- Institut de Science des Matériaux de Mulhouse, UMR CNRS 7361, Université de Haute-Alsace, Université de Strasbourg, 3b Rue Alfred Werner, F-68100 Mulhouse, France;
| |
Collapse
|