1
|
San Miguel-González GDJ, Alemán-Huerta ME, Martínez-Herrera RE, Quintero-Zapata I, de la Torre-Zavala S, Avilés-Arnaut H, Gandarilla-Pacheco FL, de Luna-Santillana EDJ. Alkaline-Tolerant Bacillus cereus 12GS: A Promising Polyhydroxybutyrate (PHB) Producer Isolated from the North of Mexico. Microorganisms 2024; 12:863. [PMID: 38792693 PMCID: PMC11124092 DOI: 10.3390/microorganisms12050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Environmental pollution caused by petroleum-derived plastics continues to increase annually. Consequently, current research is interested in the search for eco-friendly bacterial polymers. The importance of Bacillus bacteria as producers of polyhydroxyalkanoates (PHAs) has been recognized because of their physiological and genetic qualities. In this study, twenty strains of Bacillus genus PHA producers were isolated. Production was initially evaluated qualitatively to screen the strains, and subsequently, the strain B12 or Bacillus sp. 12GS, with the highest production, was selected through liquid fermentation. Biochemical and molecular identification revealed it as a novel isolate of Bacillus cereus. Production optimization was carried out using the Taguchi methodology, determining the optimal parameters as 30 °C, pH 8, 150 rpm, and 4% inoculum, resulting in 87% and 1.91 g/L of polyhydroxybutyrate (PHB). Kinetic studies demonstrated a higher production within 48 h. The produced biopolymer was analyzed using Fourier-transform infrared spectroscopy (FTIR), confirming the production of short-chain-length (scl) polyhydroxyalkanoate, named PHB, and differential scanning calorimetry (DSC) analysis revealed thermal properties, making it a promising material for various applications. The novel B. cereus isolate exhibited a high %PHB, emphasizing the importance of bioprospecting, study, and characterization for strains with biotechnological potential.
Collapse
Affiliation(s)
- Gustavo de J. San Miguel-González
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - María E. Alemán-Huerta
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Raul E. Martínez-Herrera
- Escuela de Ingenería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, Monterrey C.P. 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, Monterrey C.P. 64849, Nuevo León, Mexico
| | - Isela Quintero-Zapata
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Susana de la Torre-Zavala
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Hamlet Avilés-Arnaut
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Fátima L. Gandarilla-Pacheco
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Erick de J. de Luna-Santillana
- Laboratorio Medicina de Conservación, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro esq, Elías Piña, Colonia Narciso Mendoza, Reynosa C.P. 88700, Tamaulipas, Mexico;
| |
Collapse
|
2
|
Tyubaeva PM, Gasparyan KG, Romanov RR, Kolesnikov EA, Martirosyan LY, Larkina EA, Tyubaev MA. Biomimetic Materials Based on Poly-3-hydroxybutyrate and Chlorophyll Derivatives. Polymers (Basel) 2023; 16:101. [PMID: 38201766 PMCID: PMC10780539 DOI: 10.3390/polym16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Electrospinning of biomimetic materials is of particular interest due to the possibility of producing flexible layers with highly developed surfaces from a wide range of polymers. Additionally, electrospinning is characterized by a high simplicity of implementation and the ability to modify the produced fibrous materials, which resemble structures found in living organisms. This study explores new electrospun materials based on polyhydroxyalkanoates, specifically poly-3-hydroxybutyrate, modified with chlorophyll derivatives. The research investigates the impact of chlorophyll derivatives on the morphology, supramolecular structure, and key properties of nonwoven materials. The obtained results are of interest for the development of new flexible materials with low concentrations of chlorophyll derivatives.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Kristina G. Gasparyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Roman R. Romanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Evgeny A. Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology (MISIS), 119991 Moscow, Russia;
| | - Levon Y. Martirosyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
| | - Ekaterina A. Larkina
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Mikhail A. Tyubaev
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| |
Collapse
|
3
|
Alfano S, Pagnanelli F, Martinelli A. Rapid Estimation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Composition Using ATR-FTIR. Polymers (Basel) 2023; 15:4127. [PMID: 37896375 PMCID: PMC10611011 DOI: 10.3390/polym15204127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
A great research effort is involved in polyhydroxyalkanoates (PHAs) production and characterization since they are an attractive degradable polyester family that potentially could substitute oil-based polymers. This is due to two main key factors: their production is sustainable, being that they are produced by microorganisms possibly fed by organic waste-derived products, and they are degradable. Moreover, PHAs' thermal and mechanical properties could be tuned by varying their monomeric composition through the proper selection of microorganism feedstock and bioreactor operative conditions. Hence, a rapid and facile determination of the PHA chemical structure by widely available instrumentation is useful. As an alternative to the standard gas-chromatographic method, a new procedure for the composition determination of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P3HBV), the most common PHA copolymer, by attenuated total reflection FTIR (ATR-FTIR) is presented. It is based on the linear dependence of selected and normalized absorption band intensity with the molar fraction of repeating units. To break free from the crystallinity variability, which affects the result reproducibility and data scattering, the polymer sample was rapidly quenched from the melt directly on the surface of the ATR internal reflection element and analyzed. The data obtained from 14 samples with a molar fraction of 3-hydroxybutyrate repeating units (X3HB) ranging from 0.15 to 1 were analyzed. According to preliminary analyses, the normalized intensity of two absorption bands was selected to develop a calibration method able to predict X3HB of unknown samples and to evaluate the related uncertainty through prediction intervals of inverse regression. The proposed method proves to be useful for an easy and rapid estimation of P3HBV composition.
Collapse
Affiliation(s)
| | | | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.A.); (F.P.)
| |
Collapse
|
4
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
5
|
Kim J, Gupta NS, Bezek LB, Linn J, Bejagam KK, Banerjee S, Dumont JH, Nam SY, Kang HW, Park CH, Pilania G, Iverson CN, Marrone BL, Lee KS. Biodegradation Studies of Polyhydroxybutyrate and Polyhydroxybutyrate- co-Polyhydroxyvalerate Films in Soil. Int J Mol Sci 2023; 24:ijms24087638. [PMID: 37108799 PMCID: PMC10146786 DOI: 10.3390/ijms24087638] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Due to increased environmental pressures, significant research has focused on finding suitable biodegradable plastics to replace ubiquitous petrochemical-derived polymers. Polyhydroxyalkanoates (PHAs) are a class of polymers that can be synthesized by microorganisms and are biodegradable, making them suitable candidates. The present study looks at the degradation properties of two PHA polymers: polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-polyhydroxyvalerate (PHBV; 8 wt.% valerate), in two different soil conditions: soil fully saturated with water (100% relative humidity, RH) and soil with 40% RH. The degradation was evaluated by observing the changes in appearance, chemical signatures, mechanical properties, and molecular weight of samples. Both PHB and PHBV were degraded completely after two weeks in 100% RH soil conditions and showed significant reductions in mechanical properties after just three days. The samples in 40% RH soil, however, showed minimal changes in mechanical properties, melting temperatures/crystallinity, and molecular weight over six weeks. By observing the degradation behavior for different soil conditions, these results can pave the way for identifying situations where the current use of plastics can be replaced with biodegradable alternatives.
Collapse
Affiliation(s)
- Jihyeon Kim
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Nevin S Gupta
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Lindsey B Bezek
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jacqueline Linn
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karteek K Bejagam
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Shounak Banerjee
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Joseph H Dumont
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Sang Yong Nam
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun Woo Kang
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Chi Hoon Park
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ghanshyam Pilania
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- General Electric Global Research Center, Niskayuna, NY 12309, USA
| | - Carl N Iverson
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Babetta L Marrone
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kwan-Soo Lee
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
6
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
7
|
Pulingam T, Appaturi JN, Parumasivam T, Ahmad A, Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers (Basel) 2022; 14:2141. [PMID: 35683815 PMCID: PMC9182786 DOI: 10.3390/polym14112141] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering technology aids in the regeneration of new tissue to replace damaged or wounded tissue. Three-dimensional biodegradable and porous scaffolds are often utilized in this area to mimic the structure and function of the extracellular matrix. Scaffold material and design are significant areas of biomaterial research and the most favorable material for seeding of in vitro and in vivo cells. Polyhydroxyalkanoates (PHAs) are biopolyesters (thermoplastic) that are appropriate for this application due to their biodegradability, thermo-processability, enhanced biocompatibility, mechanical properties, non-toxicity, and environmental origin. Additionally, they offer enormous potential for modification through biological, chemical and physical alteration, including blending with various other materials. PHAs are produced by bacterial fermentation under nutrient-limiting circumstances and have been reported to offer new perspectives for devices in biological applications. The present review discusses PHAs in the applications of conventional medical devices, especially for soft tissue (sutures, wound dressings, cardiac patches and blood vessels) and hard tissue (bone and cartilage scaffolds) regeneration applications. The paper also addresses a recent advance highlighting the usage of PHAs in implantable devices, such as heart valves, stents, nerve guidance conduits and nanoparticles, including drug delivery. This review summarizes the in vivo and in vitro biodegradability of PHAs and conducts an overview of current scientific research and achievements in the development of PHAs in the biomedical sector. In the future, PHAs may replace synthetic plastics as the material of choice for medical researchers and practitioners.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | | | | | - Azura Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| |
Collapse
|
8
|
Degradation of P(3HB-co-4HB) Films in Simulated Body Fluids. Polymers (Basel) 2022; 14:polym14101990. [PMID: 35631874 PMCID: PMC9143980 DOI: 10.3390/polym14101990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
A novel model of biodegradable PHA copolymer films preparation was applied to evaluate the biodegradability of various PHA copolymers and to discuss its biomedical applicability. In this study, we illustrate the potential biomaterial degradation rate affectability by manipulation of monomer composition via controlling the biosynthetic strategies. Within the experimental investigation, we have prepared two different copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate—P(3HB-co-36 mol.% 4HB) and P(3HB-co-66 mol.% 4HB), by cultivating the thermophilic bacterial strain Aneurinibacillus sp. H1 and further investigated its degradability in simulated body fluids (SBFs). Both copolymers revealed faster weight reduction in synthetic gastric juice (SGJ) and artificial colonic fluid (ACF) than simple homopolymer P3HB. In addition, degradation mechanisms differed across tested polymers, according to SEM micrographs. While incubated in SGJ, samples were fragmented due to fast hydrolysis sourcing from substantially low pH, which suggest abiotic degradation as the major degradation mechanism. On the contrary, ACF incubation indicated obvious enzymatic hydrolysis. Further, no cytotoxicity of the waste fluids was observed on CaCO-2 cell line. Based on these results in combination with high production flexibility, we suggest P(3HB-co-4HB) copolymers produced by Aneurinibacillus sp. H1 as being very auspicious polymers for intestinal in vivo treatments.
Collapse
|
9
|
Mourão MM, Xavier LP, Urbatzka R, Figueiroa LB, da Costa CEF, Dias CGBT, Schneider MPC, Vasconcelos V, Santos AV. Characterization and Biotechnological Potential of Intracellular Polyhydroxybutyrate by Stigeoclonium sp. B23 Using Cassava Peel as Carbon Source. Polymers (Basel) 2021; 13:polym13050687. [PMID: 33668862 PMCID: PMC7956423 DOI: 10.3390/polym13050687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
The possibility of utilizing lignocellulosic agro-industrial waste products such as cassava peel hydrolysate (CPH) as carbon sources for polyhydroxybutyrate (PHB) biosynthesis and characterization by Amazonian microalga Stigeoclonium sp. B23. was investigated. Cassava peel was hydrolyzed to reducing sugars to obtain increased glucose content with 2.56 ± 0.07 mmol/L. Prior to obtaining PHB, Stigeoclonium sp. B23 was grown in BG-11 for characterization and Z8 media for evaluation of PHB nanoparticles' cytotoxicity in zebrafish embryos. As results, microalga produced the highest amount of dry weight of PHB with 12.16 ± 1.28 (%) in modified Z8 medium, and PHB nanoparticles exerted some toxicity on zebrafish embryos at concentrations of 6.25-100 µg/mL, increased mortality (<35%) and lethality indicators as lack of somite formation (<25%), non-detachment of tail, and lack of heartbeat (both <15%). Characterization of PHB by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC), and thermogravimetry (TGA) analysis revealed the polymer obtained from CPH cultivation to be morphologically, thermally, physically, and biologically acceptable and promising for its use as a biomaterial and confirmed the structure of the polymer as PHB. The findings revealed that microalgal PHB from Stigeoclonium sp. B23 was a promising and biologically feasible new option with high commercial value, potential for biomaterial applications, and also suggested the use of cassava peel as an alternative renewable resource of carbon for PHB biosynthesis and the non-use of agro-industrial waste and dumping concerns.
Collapse
Affiliation(s)
- Murilo Moraes Mourão
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil;
- Correspondence: (M.M.M.); (A.V.S.)
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil;
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR, University of Porto, 4450-208 Porto, Portugal; (R.U.); (V.V.)
| | - Lucas Barbosa Figueiroa
- Laboratory of Oils of the Amazon, Guamá Science and Technology Park, Federal University of Pará, 66075-750 Belém, Pará, Brazil; (L.B.F.); (C.E.F.d.C.)
| | - Carlos Emmerson Ferreira da Costa
- Laboratory of Oils of the Amazon, Guamá Science and Technology Park, Federal University of Pará, 66075-750 Belém, Pará, Brazil; (L.B.F.); (C.E.F.d.C.)
| | | | | | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR, University of Porto, 4450-208 Porto, Portugal; (R.U.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil;
- Correspondence: (M.M.M.); (A.V.S.)
| |
Collapse
|
10
|
Abstract
Abstract
In the 21st century, additive manufacturing technologies have gained in popularity mainly due to benefits such as rapid prototyping, faster small production runs, flexibility and space for innovations, non-complexity of the process and broad affordability. In order to meet diverse requirements that 3D models have to meet, it is necessary to develop new 3D printing technologies as well as processed materials. This review is focused on 3D printing technologies applicable for polyhydroxyalkanoates (PHAs). PHAs are thermoplastics regarded as a green alternative to petrochemical polymers. The 3D printing technologies presented as available for PHAs are selective laser sintering and fused deposition modeling. Stereolithography can also be applied provided that the molecular weight and functional end groups of the PHA are adjusted for photopolymerization. The chemical and physical properties primarily influence the processing of PHAs by 3D printing technologies. The intensive research for the fabrication of 3D objects based on PHA has been applied to fulfil criteria of rapid and customized prototyping mainly in the medical area.
Collapse
|
11
|
Sun X, Veeraraghavan VP, Surapaneni KM, Hussain S, Mathanmohun M, Alharbi SA, Aladresi AAM, Chinnathambi A. Eugenol-piperine loaded polyhydroxy butyrate/polyethylene glycol nanocomposite-induced apoptosis and cell death in nasopharyngeal cancer (C666-1) cells through the inhibition of the PI3K/AKT/mTOR signaling pathway. J Biochem Mol Toxicol 2021; 35:e22700. [PMID: 33421271 DOI: 10.1002/jbt.22700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022]
Abstract
Nasopharyngeal cancer is a malignancy developing from the nasopharynx epithelium due to smoking and nitrosamine-containing foods. Nasopharyngeal cancer is highly endemic to Southeast Asia. Eugenol and piperine have shown many anticancer activities on numerous cancer types, like colon, lung, liver, and breast cancer. In this study, we amalgamated eugenol and piperine loaded with a polyhydroxy butyrate/polyethylene glycol nanocomposite (Eu-Pi/PHB-PEG-NC) for better anticancer results against nasopharyngeal cancer (C666-1) cells. In the current study, nasopharyngeal cancer cell lines C666-1 were utilized to appraise the cytotoxic potential of Eug-Pip-PEG-NC on cell propagation, programmed cell death, and relocation. Eu-Pi/PHB-PEG-NC inhibits cellular proliferation on C666-1 cells in a dose-dependent manner, and when compared with 20 µg/ml, 15 µg/ml of loaded mixture evidently restrained the passage aptitude of C666-1 cells, this was attended with a downregulated expression of mitochondrial membrane potential. Treatment with 15 µg/ml Eu-Pi/PHB-PEG-NC suggestively amplified cell apoptosis in the C666-1 cells. Furthermore, its cleaved caspase-3, 8, and 9 and Bax gene expression was augmented and Bcl-2 gene expression was diminished after Eu-Pi/PHB-PEG-NC treatment. Additionally, our data established that the collective effect of Eu-Pi/PHB-PEG-NC loaded micelles inhibited the expansion of C666-1 cells augmented apoptosis connected with the intrusion of PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaopeng Sun
- Department of Surgery, Faculty of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Otolaryngology, Second Affiliated Hospital of Xi'an Medical College, Xi'an, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry, Clinical Skills & Simulation, Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, Tamilnadu, India
| | - Sardar Hussain
- Department of Biotechnology, Government Science College, Chitradurga, Karnataka, India
| | - Maghimaa Mathanmohun
- Department of Microbiology, Muthayammal College of Arts & Science, Rasipuram, Namakkal, Tamilnadu, India
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Zhuikov VA, Akoulina EA, Chesnokova DV, Wenhao Y, Makhina TK, Demyanova IV, Zhuikova YV, Voinova VV, Belishev NV, Surmenev RA, Surmeneva MA, Bonartseva GA, Shaitan KV, Bonartsev AP. The Growth of 3T3 Fibroblasts on PHB, PLA and PHB/PLA Blend Films at Different Stages of Their Biodegradation In Vitro. Polymers (Basel) 2020; 13:polym13010108. [PMID: 33383857 PMCID: PMC7795568 DOI: 10.3390/polym13010108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
Over the past century there was a significant development and extensive application of biodegradable and biocompatible polymers for their biomedical applications. This research investigates the dynamic change in properties of biodegradable polymers: poly(3-hydroxybutyrate (PHB), poly-l-lactide (PLA), and their 50:50 blend (PHB/PLA)) during their hydrolytic non-enzymatic (in phosphate buffered saline (PBS), at pH = 7.4, 37 °C) and enzymatic degradation (in PBS supplemented with 0.25 mg/mL pancreatic lipase). 3T3 fibroblast proliferation on the polymer films experiencing different degradation durations was also studied. Enzymatic degradation significantly accelerated the degradation rate of polymers compared to non-enzymatic hydrolytic degradation, whereas the seeding of 3T3 cells on the polymer films accelerated only the PLA molecular weight loss. Surprisingly, the immiscible nature of PHB/PLA blend (showed by differential scanning calorimetry) led to a slower and more uniform enzymatic degradation in comparison with pure polymers, PHB and PLA, which displayed a two-stage degradation process. PHB/PLA blend also displayed relatively stable cell viability on films upon exposure to degradation of different durations, which was associated with the uneven distribution of cells on polymer films. Thus, the obtained data are of great benefit for designing biodegradable scaffolds based on polymer blends for tissue engineering.
Collapse
Affiliation(s)
- Vsevolod A. Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (V.A.Z.); (T.K.M.); (Y.V.Z.); (G.A.B.)
| | - Elizaveta A. Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Dariana V. Chesnokova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - You Wenhao
- Biological Faculty, Shenzhen MSU-BIT University, No.299, Ruyi Road, Longgang District, Shenzhen 518172, China; (Y.W.); (I.V.D.)
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (V.A.Z.); (T.K.M.); (Y.V.Z.); (G.A.B.)
| | - Irina V. Demyanova
- Biological Faculty, Shenzhen MSU-BIT University, No.299, Ruyi Road, Longgang District, Shenzhen 518172, China; (Y.W.); (I.V.D.)
| | - Yuliya V. Zhuikova
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (V.A.Z.); (T.K.M.); (Y.V.Z.); (G.A.B.)
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Nikita V. Belishev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Roman A. Surmenev
- National Research Tomsk Polytechnic University, Lenin Ave, 30, 634050 Tomsk, Russia; (R.A.S.); (M.A.S.)
| | - Maria A. Surmeneva
- National Research Tomsk Polytechnic University, Lenin Ave, 30, 634050 Tomsk, Russia; (R.A.S.); (M.A.S.)
| | - Garina A. Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (V.A.Z.); (T.K.M.); (Y.V.Z.); (G.A.B.)
| | - Konstantin V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
- Correspondence: ; Tel.: +7-4959306306
| |
Collapse
|
13
|
Vostrejs P, Adamcová D, Vaverková MD, Enev V, Kalina M, Machovsky M, Šourková M, Marova I, Kovalcik A. Active biodegradable packaging films modified with grape seeds lignin. RSC Adv 2020; 10:29202-29213. [PMID: 35521111 PMCID: PMC9055960 DOI: 10.1039/d0ra04074f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022] Open
Abstract
Biodegradable packaging materials represent one possible solution for how to reduce the negative environmental impact of plastics. The main idea of this work was to investigate the possibility of utilizing grape seed lignin for the modification of polyhydroxyalkanoates with the use of its antioxidant capacity in packaging films. For this purpose, polymeric films based on the blend of high crystalline poly(3-hydroxybutyrate) (PHB) and amorphous polyhydroxyalkanoate (PHA) were prepared. PHB/PHA films displayed Young modulus of 240 MPa, tensile strength at a maximum of 6.6 MPa and elongation at break of 95.2%. The physical properties of PHB/PHA films were modified by the addition of 1-10 wt% of grape seeds lignin (GS-L). GS-L lignin showed a high antioxidant capacity: 238 milligrams of Trolox equivalents were equal to one gram of grape seeds lignin. The incorporation of grape seeds lignin into PHB/PHA films positively influenced their gas barrier properties, antioxidant activity and biodegradability. The values of oxygen and carbon dioxide transition rate of PHB/PHA with 1 wt% of GS-L were 7.3 and 36.3 cm3 m-2 24 h 0.1 MPa, respectively. The inhibition percentage of the ABTS radical determined in PHB/PHA/GS-L was in the range of 29.2% to 100% depending on the lignin concentration. The biodegradability test carried out under controlled composting environment for 90 days showed that the PHB/PHA film with 50 w/w% of amorphous PHA reached the degradability degree of 68.8% being about 26.6% higher decomposition than in the case of neat high crystalline PHB film. The degradability degree of PHA films in compost within the tested period reflected the modification of the semi-crystalline character and varied with the incorporated lignin. From the toxicological point of view, the composts obtained after biodegradation of PHA films proved the non-toxicity of PHB/PHA/GS-L materials and its degradation products showed a positive effect on white mustard (Sinapis alba L.) seeds germination.
Collapse
Affiliation(s)
- Pavel Vostrejs
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| | - Dana Adamcová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic
- Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW Nowoursynowska 159m 02 776 Warsaw Poland
| | - Vojtech Enev
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| | - Michal Machovsky
- Centre of Polymer Systems, Tomas Bata University in Zlín Třída Tomáše Bati 5678 760 01 Zlin Czech Republic
| | - Markéta Šourková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno Zemědělská 1 613 00 Brno Czech Republic
| | - Ivana Marova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| | - Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology Purkynova 118 612 00 Brno Czech Republic
| |
Collapse
|