1
|
Manon J, Evrard R, Maistriaux L, Fieve L, Xhema D, Heller U, Broeck LVD, Vettese J, Boisson J, Schubert T, Lengele B, Behets C, Cornu O. HLA Awareness in tissue decellularization: A paradigm shift for enhanced biocompatibility, studied on the model of the human fascia lata graft. Biomaterials 2025; 312:122741. [PMID: 39121727 DOI: 10.1016/j.biomaterials.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Last twenties, tissue engineering has rapidly advanced to address the shortage of organ donors. Decellularization techniques have been developed to mitigate immune rejection and alloresponse in transplantation. However, a clear definition of effective decellularization remains elusive. This study compares various decellularization protocols using the human fascia lata model. Morphological, structural and cytotoxicity/viability analyses indicated that all the five tested protocols were equivalent and met Crapo's criteria for successful decellularization. Interestingly, only the in vivo immunization test on rats revealed differences. Only one protocol exhibited Human Leucocyte Antigen (HLA) content below 1% residual threshold, the only criterion preventing rat immunization with an absence of rat anti-human IgG switch after one month (N=4 donors for each of the 7 groups, added by negative and positive controls, n=28). By respecting a refined set of criteria, i.e. lack of visible nuclear material, <50ng DNA/mg dry weight of extracellular matrix, and <1% residual HLA content, the potential for adverse host reactions can be drastically reduced. In conclusion, this study emphasizes the importance of considering not only nuclear components but also major histocompatibility complex in decellularization protocols and proposes new guidelines to promote safer clinical development and use of bioengineered scaffolds.
Collapse
Affiliation(s)
- Julie Manon
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium.
| | - Robin Evrard
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium
| | - Louis Maistriaux
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Lies Fieve
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Daela Xhema
- UCLouvain - IREC, Transplantation and Experimental Surgery Lab (CHEX), Avenue Hippocrate 55 - B1.55.04, 1200 Brussels, Belgium
| | - Ugo Heller
- APHP, Necker Enfants Malades, Unit of Maxillofacial Surgery and Plastic Surgery, Paris, France; IMSIA, ENSTA Paris-Tech, Department of Mechanical Engineering, Palaiseau, Paris, France
| | - Lucien Van Den Broeck
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Julia Vettese
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium
| | - Jean Boisson
- IMSIA, ENSTA Paris-Tech, Department of Mechanical Engineering, Palaiseau, Paris, France
| | - Thomas Schubert
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium
| | - Benoît Lengele
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Plastic and Reconstructive Surgery, Brussels 1200, Belgium
| | - Catherine Behets
- UCLouvain - IREC, Morphology Lab (MORF), Avenue Emmanuel Mounier 52 - B1.52.04, 1200 Brussels, Belgium
| | - Olivier Cornu
- UCLouvain - IREC, Neuromusculoskeletal Lab (NMSK), Avenue Emmanuel Mounier 53 - B1.53.07, 1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Centre de Thérapie Cellulaire et Tissulaire Locomoteur, Brussels, Belgium; Cliniques universitaires Saint-Luc, Department of Orthopaedic and Trauma Surgery, Brussels 1200, Belgium
| |
Collapse
|
2
|
Verboket RD, Henrich D, Janko M, Sommer K, Neijhoft J, Söhling N, Weber B, Frank J, Marzi I, Nau C. Human Acellular Collagen Matrices-Clinical Opportunities in Tissue Replacement. Int J Mol Sci 2024; 25:7088. [PMID: 39000200 PMCID: PMC11241445 DOI: 10.3390/ijms25137088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The field of regenerative medicine is increasingly in need of effective and biocompatible materials for tissue engineering. Human acellular dermal matrix (hADM)-derived collagen matrices stand out as a particularly promising candidate. Their ability to preserve structural integrity, coupled with exceptional biocompatibility, positions them as a viable choice for tissue replacement. However, their clinical application has been largely confined to serving as scaffolds. This study aims to expand the horizon of clinical uses for collagen sheets by exploring the diverse cutting-edge clinical demands. This review illustrates the clinical utilizations of collagen sheets beyond traditional roles, such as covering skin defects or acting solely as scaffolds. In particular, the potential of Epiflex®, a commercially available and immediately clinically usable allogeneic membrane, will be evaluated. Collagen sheets have demonstrated efficacy in bone reconstruction, where they can substitute the induced Masquelet membrane in a single-stage procedure, proving to be clinically effective and safe. The application of these membranes allow the reconstruction of substantial tissue defects, without requiring extensive plastic reconstructive surgery. Additionally, they are found to be apt for addressing osteochondritis dissecans lesions and for ligament reconstruction in the carpus. The compelling clinical examples showcased in this study affirm that the applications of human ADM extend significantly beyond its initial use for skin defect treatments. hADM has proven to be highly successful and well-tolerated in managing various etiologies of bone and soft tissue defects, enhancing patient care outcomes. In particular, the application from the shelf reduces the need for additional surgery or donor site defects.
Collapse
Affiliation(s)
- René D. Verboket
- Department of Trauma Surgery and Orthopaedics, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.H.); (M.J.); (K.S.); (J.N.); (N.S.); (B.W.); (J.F.); (I.M.); (C.N.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bormann N, Schmock A, Hanke A, Eras V, Ahmed N, Kissner MS, Wildemann B, Brune JC. Analysis of the Ability of Different Allografts to Act as Carrier Grafts for Local Drug Delivery. J Funct Biomater 2023; 14:305. [PMID: 37367268 DOI: 10.3390/jfb14060305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Bone defects and infections pose significant challenges for treatment, requiring a comprehensive approach for prevention and treatment. Thus, this study sought to evaluate the efficacy of various bone allografts in the absorption and release of antibiotics. A specially designed high-absorbency, high-surface-area carrier graft composed of human demineralized cortical fibers and granulated cancellous bone (fibrous graft) was compared to different human bone allograft types. The groups tested here were three fibrous grafts with rehydration rates of 2.7, 4, and 8 mL/g (F(2.7), F(4), and F(8)); demineralized bone matrix (DBM); cortical granules; mineralized cancellous bone; and demineralized cancellous bone. The absorption capacity of the bone grafts was assessed after rehydration, the duration of absorption varied from 5 to 30 min, and the elution kinetics of gentamicin were determined over 21 days. Furthermore, antimicrobial activity was assessed using a zone of inhibition (ZOI) test with S. aureus. The fibrous grafts exhibited the greatest tissue matrix absorption capacity, while the mineralized cancellous bone revealed the lowest matrix-bound absorption capacity. For F(2.7) and F(4), a greater elution of gentamicin was observed from 4 h and continuously over the first 3 days when compared to the other grafts. Release kinetics were only marginally affected by the varied incubation times. The enhanced absorption capacity of the fibrous grafts resulted in a prolonged antibiotic release and activity. Therefore, fibrous grafts can serve as suitable carrier grafts, as they are able to retain fluids such as antibiotics at their intended destinations, are easy to handle, and allow for a prolonged antibiotic release. Application of these fibrous grafts can enable surgeons to provide longer courses of antibiotic administration for septic orthopedic indications, thus minimizing infections.
Collapse
Affiliation(s)
- Nicole Bormann
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
| | - Aysha Schmock
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
| | - Anja Hanke
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Volker Eras
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Norus Ahmed
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Maya S Kissner
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
| | - Britt Wildemann
- Julius Wolff Institut und BIH-Center für Regenerative Therapien und Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin und Berlin Institute of Health, 13353 Berlin, Germany
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| | - Jan C Brune
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| |
Collapse
|
4
|
Söhling N, Heilani M, Fremdling C, Schaible A, Schröder K, Brune JC, Eras V, Nau C, Marzi I, Henrich D, Verboket RD. One Stage Masquelets Technique: Evaluation of Different Forms of Membrane Filling with and without Bone Marrow Mononuclear Cells (BMC) in Large Femoral Bone Defects in Rats. Cells 2023; 12:cells12091289. [PMID: 37174689 PMCID: PMC10177115 DOI: 10.3390/cells12091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The classic two-stage masquelet technique is an effective procedure for the treatment of large bone defects. Our group recently showed that one surgery could be saved by using a decellularized dermis membrane (DCD, Epiflex, DIZG). In addition, studies with bone substitute materials for defect filling show that it also appears possible to dispense with the removal of syngeneic cancellous bone (SCB), which is fraught with complications. The focus of this work was to clarify whether the SCB can be replaced by the granular demineralized bone matrix (g-DBM) or fibrous demineralized bone matrix (f-DBM) demineralized bone matrix and whether the colonization of the DCD and/or the DBM defect filling with bone marrow mononuclear cells (BMC) can lead to improved bone healing. In 100 Sprague Dawley rats, a critical femoral bone defect 5 mm in length was stabilized with a plate and then encased in DCD. Subsequently, the defect was filled with SCB (control), g-DBM, or f-DBM, with or without BMC. After 8 weeks, the femurs were harvested and subjected to histological, radiological, and biomechanical analysis. The analyses showed the incipient bony bridging of the defect zone in both groups for g-DBM and f-DBM. Stability and bone formation were not affected compared to the control group. The addition of BMCs showed no further improvement in bone healing. In conclusion, DBM offers a new perspective on defect filling; however, the addition of BMC did not lead to better results.
Collapse
Affiliation(s)
- Nicolas Söhling
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Myriam Heilani
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Charlotte Fremdling
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Alexander Schaible
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Katrin Schröder
- Center of Physiology, Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Jan C Brune
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Volker Eras
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany
| | - Christoph Nau
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - René D Verboket
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Verboket RD, Söhling N, Heilani M, Fremdling C, Schaible A, Schröder K, Brune JC, Marzi I, Henrich D. The Induced Membrane Technique—The Filling Matters: Evaluation of Different Forms of Membrane Filling with and without Bone Marrow Mononuclear Cells (BMC) in Large Femoral Bone Defects in Rats. Biomedicines 2022; 10:biomedicines10030642. [PMID: 35327444 PMCID: PMC8945121 DOI: 10.3390/biomedicines10030642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
The Masquelet technique is used to treat large bone defects; it is a two-stage procedure based on an induced membrane. To improve the induced membrane process, demineralized bone matrix in granular (GDBM) and fibrous form (f-DBM) was tested with and without bone marrow mononuclear cells (BMC) as filling of the membrane against the gold standard filling with syngeneic cancellous bone (SCB). A total of 65 male Sprague–Dawley rats obtained a 5 mm femoral defect. These defects were treated with the induced membrane technique and filled with SCB, GDBM, or f-DBM, with or without BMC. After a healing period of eight weeks, the femurs were harvested and submitted for histological, radiological, and biomechanical analyses. The fracture load in the defect zone was lower compared to SCB in all groups. However, histological analysis showed comparable new bone formation, bone mineral density, and cartilage proportions and vascularization. The results suggest that f-DBM in combination with BMC and the induced membrane technique cannot reproduce the very good results of this material in large, non-membrane coated bone defects, nevertheless it supports the maturation of new bone tissue locally. It can be concluded that BMC should be applied in lower doses and inflammatory cells should be removed from the cell preparation before implantation.
Collapse
Affiliation(s)
- René D. Verboket
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (N.S.); (M.H.); (C.F.); (A.S.); (I.M.); (D.H.)
- Correspondence: ; Tel.: +49-69-6301-7110
| | - Nicolas Söhling
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (N.S.); (M.H.); (C.F.); (A.S.); (I.M.); (D.H.)
| | - Myriam Heilani
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (N.S.); (M.H.); (C.F.); (A.S.); (I.M.); (D.H.)
| | - Charlotte Fremdling
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (N.S.); (M.H.); (C.F.); (A.S.); (I.M.); (D.H.)
| | - Alexander Schaible
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (N.S.); (M.H.); (C.F.); (A.S.); (I.M.); (D.H.)
| | - Katrin Schröder
- Center of Physiology, Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Jan C. Brune
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany;
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (N.S.); (M.H.); (C.F.); (A.S.); (I.M.); (D.H.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (N.S.); (M.H.); (C.F.); (A.S.); (I.M.); (D.H.)
| |
Collapse
|
6
|
Verboket RD, Irrle T, Busche Y, Schaible A, Schröder K, Brune JC, Marzi I, Nau C, Henrich D. Fibrous Demineralized Bone Matrix (DBM) Improves Bone Marrow Mononuclear Cell (BMC)-Supported Bone Healing in Large Femoral Bone Defects in Rats. Cells 2021; 10:1249. [PMID: 34069404 PMCID: PMC8158746 DOI: 10.3390/cells10051249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Regeneration of large bone defects is a major objective in trauma surgery. Bone marrow mononuclear cell (BMC)-supported bone healing was shown to be efficient after immobilization on a scaffold. We hypothesized that fibrous demineralized bone matrix (DBM) in various forms with BMCs is superior to granular DBM. A total of 65 male SD rats were assigned to five treatment groups: syngenic cancellous bone (SCB), fibrous demineralized bone matrix (f-DBM), fibrous demineralized bone matrix densely packed (f-DBM 120%), DBM granules (GDBM) and DBM granules 5% calcium phosphate (GDBM5%Ca2+). BMCs from donor rats were combined with different scaffolds and placed into 5 mm femoral bone defects. After 8 weeks, bone mineral density (BMD), biomechanical stability and histology were assessed. Similar biomechanical properties of f-DBM and SCB defects were observed. Similar bone and cartilage formation was found in all groups, but a significantly bigger residual defect size was found in GDBM. High bone healing scores were found in f-DBM (25) and SCB (25). The application of DBM in fiber form combined with the application of BMCs shows promising results comparable to the gold standard, syngenic cancellous bone. Denser packing of fibers or higher amount of calcium phosphate has no positive effect.
Collapse
Affiliation(s)
- René D. Verboket
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Tanja Irrle
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Yannic Busche
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Alexander Schaible
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Katrin Schröder
- Center of Physiology, Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Jan C. Brune
- German Institute for Cell- and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany;
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Christoph Nau
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| |
Collapse
|