1
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
2
|
Zhong Y, Liu C, Yan X, Li X, Chen X, Mai S. Odontogenic and anti-inflammatory effects of magnesium-doped bioactive glass in vital pulp therapy. Biomed Mater 2024; 19:045026. [PMID: 38740053 DOI: 10.1088/1748-605x/ad4ada] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
This study aimed to investigate the effects of magnesium-doped bioactive glass (Mg-BG) on the mineralization, odontogenesis, and anti-inflammatory abilities of human dental pulp stem cells (hDPSCs). Mg-BG powders with different Mg concentrations were successfully synthesized via the sol-gel method and evaluated using x-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. Apatite formation was observed on the surfaces of the materials after soaking in simulated body fluid. hDPSCs were cultured with Mg-BG powder extracts in vitro, and no evident cytotoxicity was observed. Mg-BG induced alkaline phosphatase (ALP) expression and mineralization of hDPSCs and upregulated the expression of odontogenic genes, including those encoding dentin sialophosphoprotein, dentin matrix protein 1, ALP, osteocalcin, and runt-related transcription factor 2. Moreover, Mg-BG substantially suppressed the secretion of inflammatory cytokines (interleukin [IL]-4, IL-6, IL-8, and tumor necrosis factor-alpha). Collectively, the results of this study suggest that Mg-BG has excellent in vitro bioactivity and is a potential material for vital pulp therapy of inflamed pulps.
Collapse
Affiliation(s)
- Yewen Zhong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
| | - Cong Liu
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xin Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
| | - Xiangdong Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
| | - Xiaofeng Chen
- Department of Biomaterials, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, People's Republic of China
| |
Collapse
|
3
|
Sandra Sari D, Martin M, Maduratna E, Basuki Notobroto H, Mahyudin F, Sudiana K, Ertanti N, Dinaryanti A, Abdul Rantam F. Combination adipose-derived mesenchymal stem cells-demineralized dentin matrix increase bone marker expression in periodontitis rats. Saudi Dent J 2023; 35:960-968. [PMID: 38107047 PMCID: PMC10724358 DOI: 10.1016/j.sdentj.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 12/19/2023] Open
Abstract
Background Periodontal disease is common in both developed and developing countries and affects around 20-50% of the global population, especially in adolescents, adults and the elderly is a public health problem. ADMSCs have the advantage of regenerating damaged tissue with high quality. DDM in the form of slices can improve healing in the mandibular sockets of molar teeth. The combination of ADMSC-DDM is expected to accelerate bone regeneration. Objectives To analyze the combination of ADMSCs-DDM at increasing bone marker expression in periodontitis rats. Methods This research is experimental with a randomized control group post-test-only design. A total of 50 male Wistar rats were divided into four groups: 1) normal group (K); 2) CP model (K + ); 3) CP model and treated with DDM scaffold therapy (K(s)); 4) CP model and treated with ADMSCs-DDM combination therapy (K(sc)). Making a CP model with injected LPS P. gingivalis into interproximal gingiva of the right first and second lower molars. The in vivo research stage was the implantation of the DDM scaffold and the ADMSCs-DDM combination in the rat periodontal pocket. Rats were euthanized on days 7, 14, and 28, and immunohistochemistry of STRO-1, RUNX-2, OSX, COL-I, and OCN was performed. DDM scaffolds are made in 10%, 50% and 100% concentrations for MTT testing. Statistical results were analyzed with Kruskal-Wallis and Mann-Whitney tests. Results The results of the MTT scaffold DDM were significant in the 10%, 50%, and 100% dilution groups (p < 0.05). The results showed there was a substantial difference in the expression of STRO-1 between the study groups (p < 0.05). The (K(sc)) was significantly higher than the (K) in RUNX-2 expression (p < 0.05). OSX expression showed significant results between study groups (p < 0.05). The expression of OCN and COL-I showed a significant difference in all study groups on day 28, where the (K(sc)) was higher than the (K) (p < 0.05). Conclusions Administration of the ADMSCs-DDM combination can accelerate alveolar bone regeneration on day 28. There is a mechanism of alveolar bone regeneration through the STRO-1, RUNX-2, OSX, and the COL-I pathway in periodontitis models.
Collapse
Affiliation(s)
- Desi Sandra Sari
- Department of Periodontics, Faculty of Dentistry, Universitas Jember, Jember 68121, Indonesia
| | - Millenieo Martin
- Graduated Student, Faculty of Dentistry, Universitas Jember, Jember 68121, Indonesia
| | - Ernie Maduratna
- Department of Periodontics, Faculty of Dentistry Universitas Airlangga, Surabaya 60132, Indonesia
| | - Hari Basuki Notobroto
- Department of Biostatistics and Demography, Faculty of Public Health, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic & Traumatology, Dr Soetomo General Hospital, Surabaya 60132, Indonesia
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Ketut Sudiana
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Nora Ertanti
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Aristika Dinaryanti
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Fedik Abdul Rantam
- Stem Cells Research and Development Center, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Virology, Microbiology, and Immunology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| |
Collapse
|
4
|
Dotta TC, Hayann L, de Padua Andrade Almeida L, Nogueira LFB, Arnez MM, Castelo R, Cassiano AFB, Faria G, Martelli-Tosi M, Bottini M, Ciancaglini P, Catirse ABCEB, Ramos AP. Strontium Carbonate and Strontium-Substituted Calcium Carbonate Nanoparticles Form Protective Deposits on Dentin Surface and Enhance Human Dental Pulp Stem Cells Mineralization. J Funct Biomater 2022; 13:jfb13040250. [PMID: 36412891 PMCID: PMC9680411 DOI: 10.3390/jfb13040250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Strontium acetate is applied for dental hypersensitivity treatment; however, the use of strontium carbonates for this purpose has not been described. The use of Sr-carbonate nanoparticles takes advantage of both the benefits of strontium on dentin mineralization and the abrasive properties of carbonates. Here in, we aimed to synthesize strontium carbonate and strontium-substituted calcium carbonate nanoparticles and test them as potential compounds in active dentifrices for treating dental hypersensitivity. For this, SrCO3, Sr0.5Ca0.5CO3, and CaCO3 nanoparticles were precipitated using Na2CO3, SrCl2, and/or CaCl2 as precursors. Their morphology and crystallinity were evaluated by electron microscopy (SEM) and X-ray diffraction, respectively. The nanoparticles were added to a poly (vinyl alcohol) gel and used to brush dentin surfaces isolated from human third molars. Dentin chemical composition before and after brushing was investigated by infrared spectroscopy (FTIR) and X-ray dispersive energy spectroscopy. Dentin tubule morphology, obliteration, and resistance of the coatings to acid attack were investigated by SEM and EDS. The cytotoxicity and ability of the particles to trigger the mineralization of hDPSCs in vitro were studied. Dentin brushed with the nanoparticles was coated by a mineral layer that was also able to penetrate the tubules, while CaCO3 remained as individual particles on the surface. FTIR bands related to carbonate groups were intensified after brushing with either SrCO3 or Sr0.5Ca0.5CO3. The shift of the phosphate-related FTIR band to a lower wavenumber indicated that strontium replaced calcium on the dentin structure after treatment. The coating promoted by SrCO3 or Sr0.5Ca0.5CO3 resisted the acid attack, while calcium and phosphorus were removed from the top of the dentin surface. The nanoparticles were not toxic to hDPSCs and elicited mineralization of the cells, as revealed by increased mineral nodule formation and enhanced expression of COL1, ALP, and RUNX2. Adding Sr0.5Ca0.5CO3 as an active ingredient in dentifrices formulations may be commercially advantageous since this compound combines the well-known abrasive properties of calcium carbonate with the mineralization ability of strontium, while the final cost remains between the cost of CaCO3 and SrCO3. The novel Sr0.5Ca0.5CO3 nanoparticles might emerge as an alternative for the treatment of dental hypersensitivity.
Collapse
Affiliation(s)
- Tatiane Cristina Dotta
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Larwsk Hayann
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Leonardo de Padua Andrade Almeida
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Lucas Fabrício B. Nogueira
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Mayara M. Arnez
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Raisa Castelo
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Ana Flávia B. Cassiano
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara 14801-385, Brazil
| | - Gisele Faria
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara 14801-385, Brazil
| | - Milena Martelli-Tosi
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13645-900, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Pietro Ciancaglini
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Alma B. C. E. B. Catirse
- Department of Dental Materials and Prosthodontics, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto 14040-904, Brazil
| | - Ana Paula Ramos
- Department of Chemistry, Ribeirão Preto Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- Correspondence:
| |
Collapse
|
5
|
Zhang Y, Fan Z, Xing Y, Jia S, Mo Z, Gong H. Effect of microtopography on osseointegration of implantable biomaterials and its modification strategies. Front Bioeng Biotechnol 2022; 10:981062. [PMID: 36225600 PMCID: PMC9548570 DOI: 10.3389/fbioe.2022.981062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic implants are widely used for the treatment of bone defects caused by injury, infection, tumor and congenital diseases. However, poor osseointegration and implant failures still occur frequently due to the lack of direct contact between the implant and the bone. In order to improve the biointegration of implants with the host bone, surface modification is of particular interest and requirement in the development of implant materials. Implant surfaces that mimic the inherent surface roughness and hydrophilicity of native bone have been shown to provide osteogenic cells with topographic cues to promote tissue regeneration and new bone formation. A growing number of studies have shown that cell attachment, proliferation and differentiation are sensitive to these implant surface microtopography. This review is to provide a summary of the latest science of surface modified bone implants, focusing on how surface microtopography modulates osteoblast differentiation in vitro and osseointegration in vivo, signaling pathways in the process and types of surface modifications. The aim is to systematically provide comprehensive reference information for better fabrication of orthopedic implants.
Collapse
Affiliation(s)
- Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yanghui Xing
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Shaowei Jia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhongjun Mo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| | - He Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| |
Collapse
|
6
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
7
|
Di Tinco R, Bertani G, Pisciotta A, Bertoni L, Bertacchini J, Colombari B, Conserva E, Blasi E, Consolo U, Carnevale G. Evaluation of Antimicrobial Effect of Air-Polishing Treatments and Their Influence on Human Dental Pulp Stem Cells Seeded on Titanium Disks. Int J Mol Sci 2021; 22:ijms22020865. [PMID: 33467097 PMCID: PMC7830275 DOI: 10.3390/ijms22020865] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Dental implants are one of the most frequently used treatment options for tooth replacement, and titanium is the metal of choice due to its demonstrated superiority in resisting corrosion, lack of allergic reactions and mechanical strength. Surface roughness of titanium implants favors the osseointegration process; nevertheless, its topography may provide a suitable substrate for bacterial biofilm deposition, causing peri-implantitis and leading to implant failure. Subgingival prophylaxis treatments with cleansing powders aimed to remove the bacterial accumulation are under investigation. Two different air-polishing powders—glycine and tagatose—were assayed for their cleaning and antimicrobial potential against a Pseudomonas biofilm and for their effects on human dental pulp stem cells (hDPSCs), seeded on sandblasted titanium disks. Immunofluorescence analyses were carried out to evaluate cell adhesion, proliferation, stemness and osteogenic differentiation. The results demonstrate that both the powders have a great in vitro cleaning potential in the early period and do not show any negative effects during hDPSCs osteogenic differentiation process, suggesting their suitability for enhancing the biocompatibility of titanium implants. Our data suggest that the evaluated cleansing systems reduce microbial contamination and allow us to propose tagatose as an adequate alternative to the gold standard glycine for the air-polishing prophylaxis treatment.
Collapse
Affiliation(s)
- Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
| | - Bruna Colombari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
| | - Enrico Conserva
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
- Operative Unit of Dentistry and Maxillofacial Surgery, Department Integrated Activity-Specialist Surgeries, University-Hospital of Modena, 41125 Modena, Italy
| | - Elisabetta Blasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
- Operative Unit of Dentistry and Maxillofacial Surgery, Department Integrated Activity-Specialist Surgeries, University-Hospital of Modena, 41125 Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy; (R.D.T.); (G.B.); (A.P.); (L.B.); (J.B.); (B.C.); (E.C.); (E.B.); (U.C.)
- Correspondence:
| |
Collapse
|
8
|
Sergi R, Cannillo V, Boccaccini AR, Liverani L. A New Generation of Electrospun Fibers Containing Bioactive Glass Particles for Wound Healing. MATERIALS 2020; 13:ma13245651. [PMID: 33322335 PMCID: PMC7763513 DOI: 10.3390/ma13245651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/10/2023]
Abstract
Chitosan fibers blended with polyethylene oxide (CHIT_PEO) and crosslinked with genipin were fabricated by electrospinning technique. Subsequently, CHIT_PEO bioactive glass composite electrospun mats were fabricated with the aim to achieve flexible structures with adequate mechanical properties and improved biological performance respect to CHIT_PEO fibers, for potential applications in wound healing. Three different compositions of bioactive glasses (BG) were selected and investigated: 45S5 BG, a Sr and Mg containing bioactive glass (BGMS10) and a Zn-containing bioactive glass (BGMS_2Zn). Particulate BGs (particles size < 20 μm) were separately added to the starting CHIT_PEO solution before electrospinning. The two recently developed bioactive glasses (BGMS10 and BGMS_2Zn) showed very promising biological properties in terms of bioactivity and cellular viability; thus, such compositions were added for the first time to CHIT_PEO solution to fabricate composite electrospun mats. The incorporation of bioactive glass particles and their distribution into CHIT_PEO fibers were assessed by SEM and FTIR analyses. Furthermore, CHIT_PEO composite electrospun mats showed improved mechanical properties in terms of Young’s Modulus compared to neat CHIT_PEO fibers; on the contrary, the values of tensile strain at break (%) were comparable. Biological performance in terms of cellular viability was investigated by means of WST-8 assay and CHIT_PEO composite electrospun mats showed cytocompatibility and the desired cellular viability.
Collapse
Affiliation(s)
- Rachele Sergi
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (V.C.)
| | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (V.C.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
- Correspondence: ; Tel.: +49-(0)9131-85-28603
| |
Collapse
|
9
|
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5560. [PMID: 33291305 PMCID: PMC7730917 DOI: 10.3390/ma13235560] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose are biocompatible and non-cytotoxic, being attractive natural polymers for medical devices for both soft and hard tissues. However, such natural polymers have low bioactivity and poor mechanical properties, which limit their applications. To tackle these drawbacks, collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose can be combined with bioactive glass (BG) nanoparticles and microparticles to produce composites. The incorporation of BGs improves the mechanical properties of the final system as well as its bioactivity and regenerative potential. Indeed, several studies have demonstrated that polymer/BG composites may improve angiogenesis, neo-vascularization, cells adhesion, and proliferation. This review presents the state of the art and future perspectives of collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose matrices combined with BG particles to develop composites such as scaffolds, injectable fillers, membranes, hydrogels, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a wide spectrum of applications.
Collapse
Affiliation(s)
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| |
Collapse
|