1
|
Guided Bone Regeneration with Occlusive Titanium Barrier: A Case Report and Clinical Considerations. Biomimetics (Basel) 2023; 8:biomimetics8010106. [PMID: 36975336 PMCID: PMC10046855 DOI: 10.3390/biomimetics8010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The need to obtain adequate bone volumes for prosthetic rehabilitation supported by implants, using different techniques and materials, represents an urgent need in modern dentistry. We report a case regarding the management of implant-prosthetic rehabilitation of the first and second upper right molars, in which no less than 4 mm of crestal bone remained to insert two implants. Regeneration of the residual bone was previously performed using a customized titanium barrier and a filler of a blood clot with tricalcium beta phosphate. The bone gain (3 mm) was evaluated by comparing CBCT images, while the implant stability (mean 70) was assessed with the ISQ measurement. A regenerated bone sample was taken for histological analysis. Guided bone regeneration obtained with a titanium barrier and blood clot allowed for the insertion of stable implants in a mature bone without heterologous material.
Collapse
|
2
|
An HW, Lee J, Park JW. Surface characteristics and in vitro biocompatibility of surface-modified titanium foils as a regenerative barrier membrane for guided bone regeneration. J Biomater Appl 2023; 37:1228-1242. [PMID: 36205350 DOI: 10.1177/08853282221132351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study evaluated surface characteristics and biocompatibility of surface-modified thin titanium (Ti) foils as a regenerative barrier membrane for future application in guided bone regeneration (GBR) surgery to augment atrophic alveolar bone. Anodic oxidation and post-heat treatment were performed to prepare various Ti foil samples. Then, the in vitro soft and hard tissue compatibility of the samples was evaluated by examining the cell responses using primary human gingival fibroblasts (HGFs) and MG63 human osteoblast-like cells. Investigated Ti foil samples showed marked differences in physicochemical surface properties. Additional 400°C heat treatment applied to the anodized Ti surface led to formation of an anatase titanium dioxide structure and well-organized nanoscale protrusions, and significantly increased surface wettability. Anodization and heat treatment enhanced the growth of HGFs and MG63 cells in Ti foil samples. Additional heat treatment for 10 and 30 min further significantly improved the response of HGFs including spreading and proliferation, and upregulated the mRNA expression of cell adhesion- and maturation-related genes as well as the osteoblast differentiation of MG63 cells. Ti foil sample with thin oxide coating obtained by a 30 min heat treatment exhibited poor clinical plasticity as a regenerative barrier membrane, which showed complete coating failure in the bending test. Our results indicate that anatase Ti oxide coating of a specific film thickness with nanoscale surface protrusion morphology and hydrophilic characteristics obtained by anodization and post-heat treatment would be an effective approach as a biocompatible Ti regenerative membrane for inducing better regeneration of both gingival tissue and bone.
Collapse
Affiliation(s)
- Hyun-Wook An
- Graduate School, 34986Kyungpook National University, Daegu, Korea.,Megagen Implant R&D Center, Daegu, Korea
| | - Jaesik Lee
- Megagen Implant R&D Center, Daegu, Korea
| | - Jin-Woo Park
- Department of Pediatric Dentistry, 65498Kyungpook National University School of Dentistry, Daegu, Korea
| |
Collapse
|
3
|
Bertran Faus A, Cordero Bayo J, Velasco-Ortega E, Torrejon-Moya A, Fernández-Velilla F, García F, López-López J. Customized Titanium Mesh for Guided Bone Regeneration with Autologous Bone and Xenograft. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186271. [PMID: 36143583 PMCID: PMC9501097 DOI: 10.3390/ma15186271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/12/2023]
Abstract
The augmentation of the alveolar crest after the loss of one or several teeth can be carried out using different bone augmentation techniques. These techniques include bone distraction, ridge expansion, bone block grafts, etc. Guided bone regeneration is an alternative to increase the volume of the hard tissues for the subsequent placement of the implants in the optimal three-dimensional position. The objective of this paper is to show a case report of the use of customized titanium mesh for posterior vertical bone regeneration. Case report and Results: A 59-year-old woman comes to rehabilitate edentulous spaces with implants. After taking the anamnesis and the intra and extraoral exploration, a vertical and horizontal bone defect is observed in the third quadrant. After the radiological study with CBCT, a bone height of 6.04 mm to the inferior alveolar nerve and a width of the bone crest of 3.95 mm was observed. It was decided to carry out a regeneration with a preformed titanium mesh (Avinent®, Santpedor, Spain) and four microscrews (Avinent®, Santpedor, Spain). The flap was closed without tension. Regular check-ups were performed without complications. At 7 months, the mesh was removed and two osteoingrated implants (Avinent®, Santpedor, Spain) were placed with a torque greater than 45 N/cm and an ISQ of 82 and 57 N/cm, respectively. The bone gain obtained was 1.84 and 1.92 mm in width and 4.2 and 3.78 mm in height for positions 3.5 and 3.6. The newly formed bone, obtained by trephine, was well-structured and histologically indistinguishable from the previous bone. Conclusion: The use of a customized pre-formed titanium mesh together with the mixture of autologous bone and xenograft is a feasible and predictable technique for vertical bone regeneration.
Collapse
Affiliation(s)
- Anna Bertran Faus
- Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - José Cordero Bayo
- Department of Comprehensive Dentistry for Adults and Gerodontology, Faculty of Dentistry, University of Seville, 41018 Seville, Spain
| | - Eugenio Velasco-Ortega
- Department of Comprehensive Dentistry for Adults and Gerodontology, Faculty of Dentistry, University of Seville, 41018 Seville, Spain
| | - Aina Torrejon-Moya
- Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Francesca Fernández-Velilla
- Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Fernando García
- Faculty of Medicine and Health Sciences (Dentistry), University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - José López-López
- Department of Oral Medicine, Faculty of Dentistry, Service of the Medical-Surgical Area of Dentistry Hospital, University of Barcelona, 08907 Barcelona, Spain
| |
Collapse
|
4
|
No Recommendation Is (at Least Presently) the Best Recommendation: An Updating Quality Appraisal of Recommendations on Screening for Scoliosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116659. [PMID: 35682242 PMCID: PMC9180347 DOI: 10.3390/ijerph19116659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/25/2023]
Abstract
Recommendations addressing screening for scoliosis differ substantially. Systematically developed guidelines are confronted by consensus and opinion-based statements. This paper elaborates on the issue of the standards of development and reporting of current guidelines and recommendation statements, as well as on the methodological quality of the corresponding evidence syntheses. The SORT classification and the AMSTAR 2 tool were used for those purposes, respectively. Publications included in the analysis differed substantially in terms of their methodological quality. Based on the SORT and AMSTAR 2 scores, the 2018 US PSTF recommendation statement and systematic review on screening for scoliosis are trustworthy and high-quality sources of evidence and aid for decision making. The recommendation statement on insufficient evidence to formulate any recommendations is, paradoxically, very informative. Significantly, updated opinion-based position statements supporting screening for scoliosis acknowledged the importance of research evidence as a basis for recommendation formulation and are more cautious and balanced than formerly. Expert opinions, not built on properly presented analyses of evidence, are at odds with evidence-based practice. Nonetheless, contemporary principles of screening programs, especially those addressing people's values and preferences, and the possible harms of screening, remain underrepresented in both research and recommendations addressing screening for scoliosis.
Collapse
|
5
|
Concentrated Growth Factors (CGF) Combined with Melatonin in Guided Bone Regeneration (GBR): A Case Report. Diagnostics (Basel) 2022; 12:diagnostics12051257. [PMID: 35626412 PMCID: PMC9141849 DOI: 10.3390/diagnostics12051257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
During implant restorative dentistry, common and crippling postoperative complications are pain and swelling of perioral soft tissues which engraving on patient quality of life. Concentrated growth factors (CGF), a novel generation of autologous platelet concentrate, and melatonin, endogenous indoleamine with also bone regenerative properties, may be useful for reconstruction of bony defects as well as in prosthetic and esthetic rehabilitation. We report a clinical case in which guided bone regeneration was performed combining CGF, melatonin and heterologous biomaterial. Great postoperative recovery without any complications was reported. In conclusion, in restorative dentistry the combined use of CGF and melatonin may have important roles in restoring bone defect, in improving implant osteointegration and, not less important, in preventing postoperative complications.
Collapse
|
6
|
Finding the Perfect Membrane: Current Knowledge on Barrier Membranes in Regenerative Procedures: A Descriptive Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) became common procedures in the corrective phase of periodontal treatment. In order to obtain good quality tissue neo-formation, most techniques require the use of a membrane that will act as a barrier, having as a main purpose the blocking of cell invasion from the gingival epithelium and connective tissue into the newly formed bone structure. Different techniques and materials have been developed, aiming to obtain the perfect barrier membrane. The membranes can be divided according to the biodegradability of the base material into absorbable membranes and non-absorbable membranes. The use of absorbable membranes is extremely widespread due to their advantages, but in clinical situations of significant tissue loss, the use of non-absorbable membranes is often still preferred. This descriptive review presents a synthesis of the types of barrier membranes available and their characteristics, as well as future trends in the development of barrier membranes along with some allergological aspects of membrane use.
Collapse
|
7
|
Solomon SM, Sufaru IG, Teslaru S, Ghiciuc CM, Stafie CS. Finding the Perfect Membrane: Current Knowledge on Barrier Membranes in Regenerative Procedures: A Descriptive Review. APPLIED SCIENCES-BASEL 2022. [DOI: https://doi.org/10.3390/app12031042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) became common procedures in the corrective phase of periodontal treatment. In order to obtain good quality tissue neo-formation, most techniques require the use of a membrane that will act as a barrier, having as a main purpose the blocking of cell invasion from the gingival epithelium and connective tissue into the newly formed bone structure. Different techniques and materials have been developed, aiming to obtain the perfect barrier membrane. The membranes can be divided according to the biodegradability of the base material into absorbable membranes and non-absorbable membranes. The use of absorbable membranes is extremely widespread due to their advantages, but in clinical situations of significant tissue loss, the use of non-absorbable membranes is often still preferred. This descriptive review presents a synthesis of the types of barrier membranes available and their characteristics, as well as future trends in the development of barrier membranes along with some allergological aspects of membrane use.
Collapse
|
8
|
Gorgis R, Qazo L, Bruun NH, Starch-Jensen T. Lateral Alveolar Ridge Augmentation with an Autogenous Bone Block Graft Alone with or without Barrier Membrane Coverage: a Systematic Review and Meta-Analysis. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2021; 12:e1. [PMID: 34777723 PMCID: PMC8577582 DOI: 10.5037/jomr.2021.12301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
Objectives To test the hypothesis of no difference in implant treatment outcome following lateral alveolar ridge augmentation with autogenous bone block graft with or without barrier membrane coverage. Material and Methods PubMed (MEDLINE), Embase and Cochrane library search in combination with a hand-search of relevant journals was conducted. Human studies published in English until the 8th of February 2021 were included. Randomised controlled trials with an observation period longer than three months were included. Survival of implants and suprastructures were considered as primary outcomes measures, whereas peri-implant marginal bone loss, dimensional changes of the alveolar ridge, bone regeneration, patient-reported outcome measures, biological and mechanical complications were secondary outcome measures, as evaluated by descriptive statistics and meta-analysis including 95% confidence interval (CI). Results Electronic search and hand-searching resulted in 411 entries. Five randomised controlled trials characterised by low or high risk of bias fulfilled inclusion criteria. No statistically significant difference between the two treatment modalities was observed in any of the outcome measures. However, barrier membrane coverage was associated with a non-significant gain in alveolar ridge width of 0.5 mm (95% CI = -0.1 to 1.1) and diminished resorption of -0.9 mm (95% CI = -2.4 to 0.7) compared with no barrier membrane coverage. Conclusions Comparable implant treatment outcomes were revealed following lateral alveolar ridge augmentation with autogenous bone block graft alone with or without barrier membrane coverage. However, postoperative dimensional changes of the augmented seems to be diminished with the use of barrier membrane coverage as evaluated by two-dimensional linear measurements.
Collapse
Affiliation(s)
- Romario Gorgis
- Department of Oral and Maxillofacial Surgery, Aarhus University Hospital, AarhusDenmark
| | | | - Niels Henrik Bruun
- Unit of Clinical Biostatistics, Aalborg University Hospital, AalborgDenmark
| | - Thomas Starch-Jensen
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, AalborgDenmark
| |
Collapse
|
9
|
The Role of Blood Clot in Guided Bone Regeneration: Biological Considerations and Clinical Applications with Titanium Foil. MATERIALS 2021; 14:ma14216642. [PMID: 34772167 PMCID: PMC8587813 DOI: 10.3390/ma14216642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
In Guided Bone Regeneration (GBR) materials and techniques are essential to achieve the expected results. Thanks to their properties, blood clots induce bone healing, maturation, differentiation and organization. The preferred material to protect the clot in Guided Bone Regeneration is the titanium foil, as it can be shaped according to the bone defect. Furthermore, its exposition in the oral cavity does not impair the procedure. We report on five clinical cases in order to explain the management of blood clots in combination with titanium foil barriers in different clinical settings. Besides being the best choice to protect the clot, the titanium foil represents an excellent barrier that is useful in GBR due to its biocompatibility, handling, and mechanical strength properties. The clot alone is the best natural scaffold to obtain the ideal bone quality and avoid the persistence of not-resorbed granules of filler materials in the newly regenerated bone. Even though clot contraction still needs to be improved, as it impacts the volume of the regenerated bone, future studies in GBR should be inspired by the clot and its fundamental properties.
Collapse
|
10
|
Liu W, Dong X, Qin H, Sui L, Wang J. Three-dimensional porous reduced graphene oxide/hydroxyapatite membrane for guided bone regeneration. Colloids Surf B Biointerfaces 2021; 208:112102. [PMID: 34509086 DOI: 10.1016/j.colsurfb.2021.112102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 09/05/2021] [Indexed: 02/08/2023]
Abstract
The guided bone regeneration (GBR) membrane is intended to provide sufficient space for alveolar bone regeneration and meanwhile prevent the invasion of gingival epithelium. In this study, three-dimensional porous reduced graphene oxide/hydroxyapatite (3D rGO/HA) membrane with two different sides was prepared using a two-step electrochemical method. One side of this composite membrane facing the bone defect was formed by 3D porous rGO with HA deposited on the frame of the 3D structure, and the other side of the membrane presented a dense 2D rGO surface to prevent the invasion of the gingival epithelium. The morphology, phase composition, and physical properties of the 3D rGO/HA composite membrane were characterized. Then the cell morphology, viability, and proliferation of pre-osteoblasts (MC3T3-E1 cells) on the 3D porous structure surface of membranes were evaluated and alkaline phosphatase (ALP) secretion as an indication of osteogenic differentiation was also investigated. Meanwhile, cell morphology, viability, and proliferation of HUVEC and L929 cells on the dense structure surface were examined. Finally, a cranial defect model of rat was employed to evaluate the effect of 3D rGO/HA as a GBR membrane in vivo. The results revealed the 3D rGO/HA membrane had good biocompatibility for MC3T3-E1 and HUVEC cells and could significantly enhance ALP secretion. Furthermore, this membrane also promoted the repair of calvarial defects in vivo. These results demonstrated that 3D porous rGO/HA composite membrane with a porous side and another dense side represents great application potential as an ideal GBR membrane.
Collapse
Affiliation(s)
- Wei Liu
- Department of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Xingtong Dong
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Han Qin
- Department of Prosthodontics, School & Hospital of Stomatology, Chongqing Medical University, Chongqing 400000, China
| | - Lei Sui
- Department of Prosthodontics, School & Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China.
| | - Jian Wang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Abstract
The presence of satisfactory bone volume is fundamental for the achievement of osseointegration. This systematic review aims to analyse the use of titanium meshes in guided bone regeneration in terms of bone gain, survival and success rates of implants, and percentages of exposure. An electronic search was conducted Articles were selected from databases in MEDLINE (PubMed), SCOPUS, Scielo, and Cochrane Library databases to identify studies in which bone regeneration was performed through particulate bone and the use of titanium meshes. Twenty-one studies were included in the review. In total, 382 patients, 416 titanium meshes, and 709 implants were evaluated. The average bone gain was 4.3 mm in horizontal width and 4.11 mm in vertical height. The mesh exposure was highly prevalent (28%). The survival rate of 145 simultaneous implants was 99.5%; the survival rate of 507 delayed implants was 99%. The success rate of 105 simultaneous implants was 97%; the success rate of 285 delayed implants was 95.1%. The clinical studies currently available in the literature have shown the predictability of this technique. It has a high risk of soft tissue dehiscence and membrane exposure although the optimal management of membrane exposition permits obtaining a sufficient bone regeneration volume and prevents compromising the final treatment outcome.
Collapse
|
12
|
Brum IS, Elias CN, de Carvalho JJ, Pires JLS, Pereira MJS, de Biasi RS. Properties of a bovine collagen type I membrane for guided bone regeneration applications. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Dental implant treatment requires an available bone volume in the implantation site to ensure the implant’s mechanical stability. When the bone volume is insufficient, one must resort to surgical means such as guided bone regeneration (GBR). In GBR surgery, bone grafts and membranes are used. The objective of this work is to manufacture and characterize the in vitro and in vivo properties of resorbable collagen type I membranes (Green Membrane®) for GBR. Membrane surface morphology was characterized by SEM and roughness was measured using an interferometric noncontact 3D system. In vivo skin sensitization and toxicity tests have been performed on Wistar rats. Bone defects were prepared in 24 adult male rats, filled with biomaterials (Blue Bone® and Bio Oss®) and covered with collagen membranes to maintain the mechanical stability of the site for bone regeneration. The incisions were closed with simple stitches; and 60 days after the surgery, the animals were euthanized. Results showed that the analyzed membrane was homogeneous, with collagen fiber webs and open pores. It had no sign of cytotoxicity and the cells at the insertion site showed no bone morphological changes. There was no tissue reaction and no statistical difference between Blue Bone® and Bio Oss® groups. The proposed membrane has no cytotoxicity and displays a biocompatibility profile that makes it suitable for GBR.
Collapse
Affiliation(s)
- Igor S. Brum
- Dentistry Department, Universidade do Estado do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - Carlos N. Elias
- Materials Science Department, Instituto Militar de Engenharia , Rio de Janeiro , RJ , Brazil
| | - Jorge J. de Carvalho
- Dentistry Department, Universidade do Estado do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - Jorge L. S. Pires
- Dentistry Department, Universidade do Estado do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - Mario J. S. Pereira
- Dentistry Department, Universidade do Estado do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - Ronaldo S. de Biasi
- Materials Science Department, Instituto Militar de Engenharia , Rio de Janeiro , RJ , Brazil
| |
Collapse
|