1
|
Li J, Achal V. Self-assembled silk fibroin cross-linked with genipin supplements microbial carbonate precipitation in building material. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:797-808. [PMID: 37814459 PMCID: PMC10667665 DOI: 10.1111/1758-2229.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
The process of microbially induced carbonate precipitation (MICP) is known to effectively improve engineering properties of building materials and so does silk fibroin (SF). Thus, in this study, an attempt was taken to see the improvement in sand, that is, basic building material coupled with MICP and SF. Urease producing Bacillus megaterium was utilized for MICP in Nutri-Calci medium. To improve the strength of SF itself in bacterial solution, it was cross-linked with genipin at the optimized concentration of 3.12 mg/mL. The Fourier transform infrared (FTIR) spectra confirmed the crosslinking of SF with genipin in bacterial solution. In order to understand how such cross-linking can improve engineering properties, sand moulds of 50 mm3 dimension were prepared that resulted in 35% and 55% more compressive strength than the one prepared with bacterial solution with SF and bacterial solution only, respectively with higher calcite content in former one. The FTIR, SEM, x-ray powder diffraction spectrometry and x-ray photoelectron spectroscopy analyses confirmed higher biomineral precipitation in bacterial solution coupled with genipin cross-linked SF. As the process of MICP is proven to replace cement partially from concrete without negatively influence mechanical properties, SF cross-linked with genipin can provide additional significance in developing low-carbon cement-based composites.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Environmental Science and EngineeringGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy ConversionGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
| | - Varenyam Achal
- Department of Environmental Science and EngineeringGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy ConversionGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
| |
Collapse
|
2
|
Li G, Liu J, Zhang J, Yang Y, Chen S. Shear Strength Behaviors of Aeolian Sand Solidified by Microbially Induced Calcite Precipitation and Basalt Fiber Reinforcement. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5857. [PMID: 37687550 PMCID: PMC10488342 DOI: 10.3390/ma16175857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Aeolian sand flow is identified as the main factor in the formation of sandstorms. However, conventional sand fixation methods cannot meet the current development requirements of environmental protection. In this paper, the method using Microbially Induced Calcite Precipitation (MICP) combined with basalt fiber reinforcement (BFR) was adopted to solidify the aeolian sand. Consolidated undrained triaxial shear tests were carried out to analyze the influence of fiber content, fiber length, confining pressure, and other factors on stress-strain characteristics, peak strength, brittleness index, and shear strength of aeolian sand. A shear strength model of aeolian sand solidification using MICP-BFR and considering the effect of fiber length and fiber content is established according to the test results. The results show that the peak strength of aeolian sand solidified by MICP-BFR is remarkably higher than that of aeolian sand solidified by MICP alone, and the peak strength rises with the increasing fiber length, fiber content, and confining pressure. The application of fiber can effectively reduce the brittleness index of aeolian sand solidified by MICP and improve the sample ductility. As fiber content and fiber length increase, the cohesion of solidified aeolian sand increases while the internal friction angle changes relatively little. In the limited range set by the test, the fiber length of 12 mm and the fiber content of 1.0% constitute the optimum reinforcement condition. The test results coincide with the model prediction results, indicating that the new model is fitting for predicting the shear strength of aeolian sand solidified by MICP-BFR. The research results provide an important reference value for guiding the practice of wind prevention and sand fixation in desert areas.
Collapse
Affiliation(s)
- Gang Li
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China; (G.L.); (Y.Y.); (S.C.)
| | - Jia Liu
- School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China
| | - Jinli Zhang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Yiran Yang
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China; (G.L.); (Y.Y.); (S.C.)
| | - Shufeng Chen
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China; (G.L.); (Y.Y.); (S.C.)
| |
Collapse
|
3
|
Liu J, Li X, Li G, Zhang J. Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR). MATERIALS (BASEL, SWITZERLAND) 2023; 16:1949. [PMID: 36903064 PMCID: PMC10003999 DOI: 10.3390/ma16051949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Aeolian sand flow is a major cause of land desertification, and it is prone to developing into a dust storm coupled with strong wind and thermal instability. The microbially induced calcite precipitation (MICP) technique can significantly improve the strength and integrity of sandy soils, whereas it easily leads to brittle destruction. To effectively inhibit land desertification, a method coupled with MICP and basalt fiberreinforcement (BFR) was put forward to enhance the strength and toughness of aeolian sand. Based on a permeability test and an unconfined compressive strength (UCS) test, the effects of initial dry density (ρd), fiber length (FL), and fiber content (FC) on the characteristics of permeability, strength, and CaCO3 production were analyzed, and the consolidation mechanism of the MICP-BFR method was explored. The experiments indicated that the permeability coefficient of aeolian sand increased first, then decreased, and subsequently increased with the increase in FC, whereas it exhibited a tendency to decrease first and then increase with the increase in FL. The UCS increased with the increase in the initial dry density, while it increased first and then decreased with the increase in FL and FC. Furthermore, the UCS increased linearly with the increase in CaCO3 generation, and the maximum correlation coefficient reached 0.852. The CaCO3 crystals played the roles of providing bonding, filling, and anchoring effects, and the spatial mesh structure formed by the fibers acted as a bridge effect to enhance the strength and brittle damage of aeolian sand. The findings could supply a guideline for sand solidification in desert areas.
Collapse
Affiliation(s)
- Jia Liu
- School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China
| | - Xi’an Li
- School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China
| | - Gang Li
- Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China
| | - Jinli Zhang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Zhang K, Tang CS, Jiang NJ, Pan XH, Liu B, Wang YJ, Shi B. Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. ENVIRONMENTAL EARTH SCIENCES 2023; 82:229. [PMID: 37128499 PMCID: PMC10131530 DOI: 10.1007/s12665-023-10899-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The microbial‑induced carbonate precipitation (MICP), as an emerging biomineralization technology mediated by specific bacteria, has been a popular research focus for scientists and engineers through the previous two decades as an interdisciplinary approach. It provides cutting-edge solutions for various engineering problems emerging in the context of frequent and intense human activities. This paper is aimed at reviewing the fundaments and engineering applications of the MICP technology through existing studies, covering realistic need in geotechnical engineering, construction materials, hydraulic engineering, geological engineering, and environmental engineering. It adds a new perspective on the feasibility and difficulty for field practice. Analysis and discussion within different parts are generally carried out based on specific considerations in each field. MICP may bring comprehensive improvement of static and dynamic characteristics of geomaterials, thus enhancing their bearing capacity and resisting liquefication. It helps produce eco-friendly and durable building materials. MICP is a promising and cost-efficient technology in preserving water resources and subsurface fluid leakage. Piping, internal erosion and surface erosion could also be addressed by this technology. MICP has been proved suitable for stabilizing soils and shows promise in dealing with problematic soils like bentonite and expansive soils. It is also envisaged that this technology may be used to mitigate against impacts of geological hazards such as liquefaction associated with earthquakes. Moreover, global environment issues including fugitive dust, contaminated soil and climate change problems are assumed to be palliated or even removed via the positive effects of this technology. Bioaugmentation, biostimulation, and enzymatic approach are three feasible paths for MICP. Decision makers should choose a compatible, efficient and economical way among them and develop an on-site solution based on engineering conditions. To further decrease the cost and energy consumption of the MICP technology, it is reasonable to make full use of industrial by-products or wastes and non-sterilized media. The prospective direction of this technology is to make construction more intelligent without human intervention, such as autogenous healing. To reach this destination, MICP could be coupled with other techniques like encapsulation and ductile fibers. MICP is undoubtfully a mainstream engineering technology for the future, while ecological balance, environmental impact and industrial applicability should still be cautiously treated in its real practice.
Collapse
Affiliation(s)
- Kuan Zhang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Chao-Sheng Tang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Ning-Jun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, 211189 China
| | - Xiao-Hua Pan
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Bo Liu
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Yi-Jie Wang
- Department of Civil and Environmental Engineering, University of Hawaii, Manoa, Honolulu, HI 96822 USA
| | - Bin Shi
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
5
|
Liang S, Xiao X, Wang J, Wang Y, Feng D, Zhu C. Influence of Fiber Type and Length on Mechanical Properties of MICP-Treated Sand. MATERIALS 2022; 15:ma15114017. [PMID: 35683315 PMCID: PMC9181970 DOI: 10.3390/ma15114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
Fibers are applied in construction work to improve the strength and avoid brittle failure of soil. In this paper, we analyze the impact mechanism of fiber type and length on the immobilization of microorganisms from macroscopic and microscopic perspectives with fibers of 0.2% volume fraction added to microbial-induced calcite precipitation (MICP)-treated sand. Results show the following: (1) The unconfined compressive strength (UCS) of MICP-treated sand first increases and then decreases with increasing fiber length because short fiber reinforcement can promote the precipitation of calcium carbonate, and the network formed between the fibers limits the movement of sand particles and enhances the strength of the microbial solidified sand. However, the agglomeration caused by overlong fibers leads to uneven distribution of calcium carbonate and a reduction in strength. The optimal fiber length of polypropylene, glass, and polyvinyl alcohol fiber is 9 mm, and that of basalt fiber is 12 mm. (2) The UCS of the different fiber types, from small to large, is basalt fiber < polypropylene fiber < glass fiber < polyvinyl alcohol fiber because the quality of the fiber monofilament differs. More fibers result in more a evident effect of interlacing and bending on sand and higher strength in consolidated sand.
Collapse
|
6
|
Experimental Study on Optimization of Cementation Solution for Wind-Erosion Resistance Using the MICP Method. SUSTAINABILITY 2022. [DOI: 10.3390/su14031770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, an environmentally friendly microbial-induced calcium carbonate precipitation (MICP) technique was explored to reinforce the desert sand using the stopped-flow pouring method. A detailed experimental study has been conducted with Sporosarcina (S.) pasteurii urease-producing bacteria with a 0.5 M cementation solution. To optimize the cementation solution, three different pore volumes (PV), i.e., 0.4, 0.6, and 0.8, were considered. The cementation solution was provided every 24 h and considered as one treatment cycle. The cylindrical specimen in three replicas was biotreated for 7, 14, and 21 days in 1:1 and 1:2 (diameter: height) ratios for determina-tion of split-tensile strength (STS) and unconfined compressive strength (UCS), respectively. Micro-structure characterization of untreated and biotreated sand was also examined using a scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDX). Rocklike behavior was ob-served for biotreated-sand samples using the UPV test. Test results for 21 days with 0.8 PV were 1340 kPa, 241 kPa, and 1762 m/s for UCS, STS, and UPV, respectively, with an average calcite content of 16.2%. Overall, the 0.5 M cementation solution with a 24 h treatment cycle, 0.8 PV with 7 days, and 0.4 PV with 14 days gave optimum treatment solution, and showed heavily cemented and rock-type behavior of the biotreated-sand sample.
Collapse
|
7
|
Manian AP, Bechtold T. Special Issue "Textile-Based Advanced Materials: Construction, Properties and Applications". MATERIALS 2020; 13:ma13245766. [PMID: 33348695 PMCID: PMC7765849 DOI: 10.3390/ma13245766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Developments in the science and technology of textiles is not only limited to apparel and fashion [...].
Collapse
Affiliation(s)
- Avinash P. Manian
- Correspondence: (A.P.M.); (T.B.); Tel.: +43-5572-28533 (A.P.M. & T.B.)
| | - Thomas Bechtold
- Correspondence: (A.P.M.); (T.B.); Tel.: +43-5572-28533 (A.P.M. & T.B.)
| |
Collapse
|