1
|
Suresh R, Gnanasekaran L, Rajendran S, Jalil AA, Soto-Moscoso M, Khoo KS, Ma Z, Halimatul Munawaroh HS, Show PL. Biomass waste as an alternative source of carbon and silicon-based absorbents for CO 2 capturing application. CHEMOSPHERE 2023; 343:140173. [PMID: 37714490 DOI: 10.1016/j.chemosphere.2023.140173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The production of low-cost solid adsorbents for carbon dioxide (CO2) capture has gained massive consideration. Biomass wastes are preferred as precursors for synthesis of CO2 solid adsorbents, due to their high CO2 adsorption efficiency, and ease of scalable low-cost production. This review particularly focuses on waste biomass-derived adsorbents with their CO2 adsorption performances. Specifically, studies related to carbon (biochar and activated carbon) and silicon (silicates and geopolymers)-based adsorbents were summarized. The impact of experimental parameters including nature of biomass, synthesis route, carbonization temperature and type of activation methods on the CO2 adsorption capacities of biomass-derived pure carbon and silicon-based adsorbents were evaluated. The development of various enhancement strategies on biomass-derived adsorbents for CO2 capture and their responsible factors that impact adsorbent's CO2 capture proficiency were also reviewed. The possible CO2 adsorption mechanisms on the adsorbent's surface were highlighted. The challenges and research gaps identified in this research area have also been emphasized, which will help as further research prospects.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon.
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | | | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
2
|
Guerrero Peña GDJ, Reddy KSK, Varghese AM, Prabhu A, Dabbawala AA, Polychronopoulou K, Baker MA, Anjum D, Das G, Aubry C, Hassan Ali MI, Karanikolos GN, Raj A, Elkadi M. Carbon dioxide adsorbents from flame-made diesel soot nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160140. [PMID: 36379328 DOI: 10.1016/j.scitotenv.2022.160140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Carbon dioxide (CO2) is the top contributor to global warming. On the other, soot particles formed during fuel combustion and released into the atmosphere are harmful and also contribute to global warming. It would therefore be highly advantageous to capture soot and make use of it as a feedstock to synthesize carbon-based materials for applications such as carbon dioxide adsorption. In this work, flame-made diesel soot nanoparticles were used to produce a variety of activated carbons by combined oxidative treatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH), and their performance towards CO2 adsorption was evaluated. The effect of the chemical activation of soot with H2O2 for different reaction times and with KOH on the physicochemical properties of the activated carbons was investigated and compared to fresh soot. Interestingly, hollow aggregates of carbonaceous nanoparticles of a high interplanar distance, reduced polycyclic aromatic hydrocarbons (PAH) size, shorter PAH stacks, mesoporous structure, and a high content of oxygen functionalities along with other structural defects in PAHs were obtained in the synthesized activated carbons. Among the various analysis techniques employed, Raman spectroscopy indicated that the ID/IG ratio in soot decreased after simultaneous chemical treatment, though it did not indicate any enhancement in the graphitic character since the carbonyl and carboxylic containing PAHs and monovacancies (which cause defects in PAHs) also contribute to the increase in the intensity of the graphitic band. The activated carbons possessed promising CO2 adsorption capacities, adsorption kinetics and CO2/N2 selectivity. For example, one of the activated carbons, following H2O2 treatment for 9 h and a subsequent KOH activation, exhibited a CO2 adsorption capacity of 1.78 mmol/g at 1 bar and 25 °C, representing an increase of 161 % in capacity as compared to fresh soot. Hollow aggregates of carbonaceous nanoparticles consisting of shorter PAHs with a larger number of defects led to enhanced CO2 adsorption rate and CO2/N2 selectivity on activated carbons.
Collapse
Affiliation(s)
| | - K Suresh Kumar Reddy
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Anish Mathai Varghese
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Azhagapillai Prabhu
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Aasif A Dabbawala
- Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Kyriaki Polychronopoulou
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mark A Baker
- The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 4DL, UK
| | - Dalaver Anjum
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Physics, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Gobind Das
- Department of Physics, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Cyril Aubry
- Electron Microscopy Core Labs, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mohamed I Hassan Ali
- Department of Mechanical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Georgios N Karanikolos
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Abhijeet Raj
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, India
| | - Mirella Elkadi
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Template-Mediated Synthesis of Hierarchically Porous Metal–Organic Frameworks for Efficient CO2/N2 Separation. MATERIALS 2022; 15:ma15155292. [PMID: 35955227 PMCID: PMC9369960 DOI: 10.3390/ma15155292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Carbon dioxide (CO2) is generally unavoidable during the production of fuel gases such as hydrogen (H2) from steam reformation and syngas composed of carbon monoxide (CO) and hydrogen (H2). Efficient separation of CO2 from these gases is highly important to improve the energetic utilization efficiency and prevent poisoning during specific applications. Metal–organic frameworks (MOFs), featuring ordered porous frameworks, high surface areas and tunable pore structures, are emerging porous materials utilized as solid adsorbents for efficient CO2 capture and separation. Furthermore, the construction of hierarchical MOFs with micropores and mesopores could further promote the dynamic separation processes, accelerating the diffusion of gas flow and exposing more adsorptive pore surface. Herein, we report a simple, efficient, one-pot template-mediated strategy to fabricate a hierarchically porous CuBTC (CuBTC-Water, BTC = 1,3,5-benzenetricarboxylate) for CO2 separation, which demonstrates abundant mesopores and the superb dynamic separation ability of CO2/N2. Therefore, CuBTC-Water demonstrated a CO2 uptake of 180.529 cm3 g−1 at 273 K and 1 bar, and 94.147 cm3 g−1 at 298 K and 1 bar, with selectivity for CO2/N2 mixtures as high as 56.547 at 273 K, much higher than microporous CuBTC. This work opens up a novel avenue to facilely fabricate hierarchically porous MOFs through one-pot synthesis for efficient dynamic CO2 separation.
Collapse
|