1
|
El-Badawy MA, Badawy M, El Shahawy M. Bone marrow derived mesenchymal stem cells restored GLUT1 expression in the submandibular salivary glands of ovariectomized rats. Arch Oral Biol 2024; 166:106048. [PMID: 39002180 DOI: 10.1016/j.archoralbio.2024.106048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE Loss of ovarian function in menopause is commonly associated with salivary gland dysfunction. The aim is to study the possible therapeutic effect of bone marrow mesenchymal stem cells (BM-MSCs) on the altered structure of the submandibular salivary glands (SMGs) of ovariectomized rats. DESIGN Twenty-four female, adult, Wistar rats were used and distributed into three groups (8 rats/group). The control group included sham-operated rats. The ovariectomized group consisted of rats with removed ovaries. The third group consisted of ovariectomized rats received injections, via tail, of MSCs extracted from bone marrow of 3-weeks-old rat hind limb (BM-MSC group). Four weeks after BM-MSC transplantation, the bone mineral density (BMD) of the femur was detected. The SMG was dissected and processed for histological, immunohistochemical, and histomorphometric analyses. RESULTS The ovariectomized rats depicted low BMD in the femur. The SMG acini revealed atrophy. The ductal and acinar cells depicted vacuolization and abnormal nuclear histology. GLUT1 immunostaining was decreased in SMG ducts. The BM-MSC group resumed the normal SMG histology and GLUT1 immunolabelling. CONCLUSIONS BM-MSC therapy restored the normal SMG structure and GLUT1 immunostaining in the treated ovariectomized rats, suggesting improved glucose transporting function.
Collapse
Affiliation(s)
- Menna Abdulqader El-Badawy
- Demonstrator at Department of Oral Biology, Faculty of Dentistry, Assiut University, Assiut 71515, Egypt.
| | - Mohamed Badawy
- Department of Oral Biology, Faculty of Dentistry, Assiut University, Assiut 71515, Egypt.
| | - Maha El Shahawy
- Department of Oral Biology, Faculty of Dentistry, Minia University, Misr Aswan Road, Minia 61511, Egypt; Oral Biology Department, Faculty of Dentistry, Kafrelsheikh University, Elgiesh street, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
2
|
Łobacz M, Wieczorek K, Mertowska P, Mertowski S, Kos M, Grywalska E, Hajduk G, Rahnama-Hezavah M. Evaluation of Peri-Implantitis Bone Defect Healing: Comparing the Efficacy of Small-Particle Dentin and Bio-Oss in Bone Density Attenuation. J Clin Med 2024; 13:4638. [PMID: 39200780 PMCID: PMC11354878 DOI: 10.3390/jcm13164638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Introduction: Peri-implantitis is a serious complication in dental implantology that, if left untreated, may lead to implant loss and systemic diseases. Effective regeneration of bone defects resulting from peri-implantitis is crucial to maintaining the functionality of dental implants. Purpose of the Study: The study aimed to compare the effectiveness of fine-particle dentin and Bio-Oss in the reconstruction of bone defects caused by peri-implantitis. Materials and Methods: The study included a comprehensive radiological assessment of changes in bone density over time. Bone density was assessed using Hounsfield Units (HUs) as a measure of bone attenuation, with radiological assessments performed at 8- and 12-week intervals during the healing process. The study included participants ranging in age from 30 to 65 years. Fifty-seven patients were divided into three groups: 22 patients received small-particle dentin, 15 received Bio-Oss, and 20 controls without bone substitute material. Results: The fine-dentin group showed a 20% increase in bone density after 8 weeks (p < 0.05), while the Bio-Oss group showed a 15% increase after 12 weeks (p < 0.05). The control group showed minimal changes in bone density (5% after 12 weeks), which was not statistically significant. Clinical evaluations showed 95% successful integration in the fine dentin group, 85% in the Bio-Oss group, and 70% in the control group. The fine-dentin group showed a 20% increase in bone density after 8 weeks (p < 0.05), while the Bio-Oss group showed a 15% increase after 12 weeks (p < 0.05). The control group showed minimal changes in bone density (5% after 12 weeks), which was not statistically significant. Clinical evaluations showed 95% successful integration in the fine-dentin group, 85% in the Bio-Oss group, and 70% in the control group. Conclusions: Both fine-particle dentin and Bio-Oss significantly improved bone density compared to the control group. Fine-particle dentin is suitable for immediate bone regeneration due to its rapid initial regeneration, while Bio-Oss provides long-term support, ideal for maintaining implant stability over a longer period of time. The results highlight the importance of selecting appropriate bone replacement materials depending on the clinical scenario to improve patient outcomes after dental implant placement.
Collapse
Affiliation(s)
- Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland (G.H.); (M.R.-H.)
| | - Katarzyna Wieczorek
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland (G.H.); (M.R.-H.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Marek Kos
- Department of Public Health, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (S.M.); (E.G.)
| | - Grzegorz Hajduk
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland (G.H.); (M.R.-H.)
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland (G.H.); (M.R.-H.)
| |
Collapse
|
3
|
Amid R, Kadkhodazadeh M, Kheiri A, Esfandiari S. Comparison of the healing process of xenografts with three different sources in critical-size bone defects: An in vivo study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:22-29. [PMID: 39027209 PMCID: PMC11252156 DOI: 10.34172/japid.2024.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 07/20/2024]
Abstract
Background Xenograft bone substitutes can be obtained from different animals and processed using various methods. The present in vivo study evaluated bone regeneration after using three types of xenografts with different sources in critical-sized bone defects in rabbit calvaria. Methods Four 8-mm defects were created in calvaria of 14 New Zealand and white male rabbits. Three out of four defects were filled with xenografts of bovine, camel, and ostrich sources. The fourth defect was left unfilled as the control group. Seven rabbits were sacrificed after eight weeks and seven others after 12 weeks. Micro-CT imaging and histologic evaluation were further performed on dissected calvarias. Results After 8 and 12 weeks, the highest and lowest percentages of new bone formation were observed in the camel (27.71% and 41.92%) and control (11.33% and 15.96%) groups, respectively. In the case of residual material, the ostrich group had the most value after eight weeks (53%), while after 12 weeks, it was highest in the camel group (37%). Micro-CT findings were consistent with histologic results. Conclusion Although all three xenografts can be good choices for treating bone defects, camel-sourced xenograft seemed to be better than the other two groups. The origin and processing procedures of xenografts affected their final characteristics, which should be considered for clinical use.
Collapse
Affiliation(s)
- Reza Amid
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aida Kheiri
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Esfandiari
- Department of Biology, School of Science, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Esmaeili V, Boostani H, Ahmadpour F. Efficacy of spongy xenogeneic scaffold loaded with simvastatin in the treatment of severe alveolar horizontal defect: A clinical and histological study. Niger J Clin Pract 2023; 26:369-375. [PMID: 37203098 DOI: 10.4103/njcp.njcp_86_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Background Bone tissue engineering offers several advantages for repairing skeletal defects. In this study, we designed and fabricated a scaffold for bone tissue engineering in patients with horizontal alveolar defect. Aim The items included in the fabrication of the scaffold were xenogenic bone graft, gelatin as a substrate to improve the physical integrity of scaffold, and simvastatin to stimulate osteogenesis (10 mg per 1 g of xenograft). Methods Fourteen patients with a horizontal defect in the alveolar ridge were enrolled in the study. Seven patients underwent routinely guided bone regeneration (GBR) using xenogenic bone graft plus collagenous membrane, and seven patients were treated with the scaffolds. After four months of follow-up after surgery, both the scaffold and GBR groups were examined for changes in the width of alveolar ridge and histologically for the quantity of newly produced bone. Results The newly designed scaffold showed superior osteoconduction characteristics to routine GBR materials, which were used in this study. The difference in the quantity of the newly produced bone between the scaffold group and GBR group was significant and higher for the scaffold group. Regarding newly produced bone percentage, the scaffold group showed a mean of 20.93 and the GBR group presented a mean of 13.25% (P = 0.004). Also, the mean value for the duration of surgery for GBR was 45 minutes and for scaffold was 22 minutes, which was significantly lower in the scaffold group (P < 0.001). Conclusions The newly designed scaffold is a suitable treatment modality for bone tissue engineering.
Collapse
Affiliation(s)
- V Esmaeili
- Department of Oral and Maxillofacial Pathology, Dentistry Faculty, AJA University of Medical Sciences, Tehran, Iran
| | - H Boostani
- Department of Periodontology, Dentistry Faculty, AJA University of Medical Sciences, Tehran, Iran
| | - F Ahmadpour
- Department of Oral and Maxillofacial Surgery, Dentistry Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Valencia-Llano CH, López-Tenorio D, Saavedra M, Zapata PA, Grande-Tovar CD. Comparison of Two Bovine Commercial Xenografts in the Regeneration of Critical Cranial Defects. Molecules 2022; 27:5745. [PMID: 36144483 PMCID: PMC9506155 DOI: 10.3390/molecules27185745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft's X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.
Collapse
Affiliation(s)
| | - Diego López-Tenorio
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia
| | - Marcela Saavedra
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
6
|
Badwelan M, Alkindi M, Alghamdi O, Ahmed A, Ramalingam S, Alrahlah A. Bone Regeneration Using PEVAV/β-Tricalcium Phosphate Composite Scaffolds in Standardized Calvarial Defects: Micro-Computed Tomographic Experiment in Rats. MATERIALS 2021; 14:ma14092384. [PMID: 34063709 PMCID: PMC8124713 DOI: 10.3390/ma14092384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 01/18/2023]
Abstract
Bone regeneration using beta-tricalcium phosphate (β-TCP) can be practiced using a biocomposite scaffold. Poly(ethylene-co-vinylalcohol)/poly(δ-valerolactone)/β-tricalcium phosphate (PEVAV/β-TCP) composite scaffolds showed promising in vitro results. This study evaluated the bone regenerative potential of PEVAV/β-TCP biocomposite scaffolds in standardized calvarial defects in a rat model over 4 and 10 weeks. Bilateral calvarial defects (5 mm in diameter and about 1.5 mm thick, equivalent to the thickness of the calvaria) were created in 40 male Wistar albino rats. The defects were grafted with either commercially available β-TCP (positive control), PEVAV/β-TCP 70, or PEVAV/β-TCP 50, or left empty (negative control), depending on the group to which the animal was randomly assigned, to be covered before flap closure with resorbable collagen membrane (RCM). At 4 and 10 weeks post-surgery, the collected rat calvaria were evaluated using micro computed tomography (micro-CT) analysis, to assess the newly formed bone volume (NFBV), newly formed bone mineral density (NFBMD), and remaining graft volume (RGV). The results showed that calvarial defects grafted with the PEVAV/β-TCP biocomposite exhibited higher NFBV than did control defects, both at 4 and 10 weeks post-surgery. Furthermore, calvarial defects grafted with PEVAV/β-TCP 70 showed the highest NFBV among all grafting conditions, with a statistically significant difference recorded at 10 weeks post-surgery. The PEVAV/β-TCP composite scaffold showed potentiality for the regeneration of critical-sized calvarial bone defects in a rat model.
Collapse
Affiliation(s)
- Mohammed Badwelan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.A.); (O.A.); (S.R.)
- Correspondence:
| | - Mohammed Alkindi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.A.); (O.A.); (S.R.)
| | - Osama Alghamdi
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.A.); (O.A.); (S.R.)
| | - Abeer Ahmed
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Sundar Ramalingam
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (M.A.); (O.A.); (S.R.)
| | - Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|