1
|
Cavailles J, Vaca-Medina G, Wu-Tiu-Yen J, Labonne L, Evon P, Peydecastaing J, Pontalier PY. Impact of thermomechanical pretreatment by twin-screw extrusion on the properties of bio-based materials from sugarcane bagasse obtained by thermocompression. BIORESOURCE TECHNOLOGY 2024; 414:131642. [PMID: 39414167 DOI: 10.1016/j.biortech.2024.131642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
The aim of this study was to produce binderless materials by thermocompression from lignocellulosic biomass pretreated using twin-screw extrusion. The impact of twin-screw extrusion pretreatment on sugarcane bagasse (SCB) was evaluated, along with the effects of two associated parameters: the liquid-to-solid (L/S) ratio and the screw profile, using three different mechanical shear rates. It was shown that twin-screw extrusion pretreatment resulted in materials with improved properties as compared to those obtained with untreated SCB. The mechanical properties and water resistance of materials obtained after pretreatment were mainly impacted by the screw profile. The flexural modulus increased from 5.3 to 6.1GPa and the flexural strength from 39.0 to 55.5 MPa. Water absorption (WA) from the thermocompressed materials ranged from 25 to 62 %, and thickness swelling (TS) from 24 to 67 %. Materials obtained with a 0.4 L/S ratio had lower flexural strength but the best water resistance. For the same L/S ratio, the use of a more shearing screw profile improved the material properties, especially the water resistance. The best material was produced with pretreated SCB using a 1.25 L/S ratio with the most restrictive screw profile, resulting in materials with a 5.6GPa flexural modulus, 55.5 MPa flexural strength, and WA and TS values of 44 % and 42 %, respectively.
Collapse
Affiliation(s)
- Julie Cavailles
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France; eRcane, La Réunion, Sainte-Clotilde, France.
| | - Guadalupe Vaca-Medina
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| | | | - Laurent Labonne
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| | - Philippe Evon
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| | - Jérôme Peydecastaing
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| | - Pierre-Yves Pontalier
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, France.
| |
Collapse
|
2
|
Lima GMR, Mukherjee A, Picchioni F, Bose RK. Characterization of Biodegradable Polymers for Porous Structure: Further Steps toward Sustainable Plastics. Polymers (Basel) 2024; 16:1147. [PMID: 38675066 PMCID: PMC11054705 DOI: 10.3390/polym16081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Plastic pollution poses a significant environmental challenge, necessitating the investigation of bioplastics with reduced end-of-life impact. This study systematically characterizes four promising bioplastics-polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and polylactic acid (PLA). Through a comprehensive analysis of their chemical, thermal, and mechanical properties, we elucidate their structural intricacies, processing behaviors, and potential morphologies. Employing an environmentally friendly process utilizing supercritical carbon dioxide, we successfully produced porous materials with microcellular structures. PBAT, PBS, and PLA exhibit closed-cell morphologies, while PHBV presents open cells, reflecting their distinct overall properties. Notably, PBAT foam demonstrated an average porous area of 1030.86 μm2, PBS showed an average porous area of 673 μm2, PHBV displayed open pores with an average area of 116.6 μm2, and PLA exhibited an average porous area of 620 μm2. Despite the intricacies involved in correlating morphology with material properties, the observed variations in pore area sizes align with the findings from chemical, thermal, and mechanical characterization. This alignment enhances our understanding of the morphological characteristics of each sample. Therefore, here, we report an advancement and comprehensive research in bioplastics, offering deeper insights into their properties and potential morphologies with an easy sustainable foaming process. The alignment of the process with sustainability principles, coupled with the unique features of each polymer, positions them as environmentally conscious and versatile materials for a range of applications.
Collapse
Affiliation(s)
| | | | | | - Ranjita K. Bose
- Product Technology Department, University of Groningen, 9747 AG Groningen, The Netherlands; (G.M.R.L.); (A.M.); (F.P.)
| |
Collapse
|
3
|
Sasimowski E, Majewski Ł, Grochowicz M. Study on the Biodegradation of Poly(Butylene Succinate)/Wheat Bran Biocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6843. [PMID: 37959440 PMCID: PMC10647723 DOI: 10.3390/ma16216843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
This paper presents the results of a study investigating the biodegradation of poly(butylene succinate) (PBS)/wheat bran (WB) biocomposites. Injection mouldings were subjected to biodegradation in compost-filled bioreactors under controlled humidity and temperature conditions. The effects of composting time (14, 42 and 70 days) and WB mass content (10%, 30% and 50% wt.) on the structural and thermal properties of the samples were investigated. Measurements were made by infrared spectral analysis, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. Results demonstrated that both the thermal and structural properties of the samples depended greatly on the biodegradation time. Specifically, their crystallinity degree increased significantly while molecular mass sharply decreased with biodegradation time, whereas their thermal resistance only showed a slight increase. This resulted from enzymatic hydrolysis that led to the breakdown of ester bonds in polymer chains. It was also found that a higher WB content led to a higher mass loss in the biocomposite samples during biodegradation and affected their post-biodegradation properties. A higher bran content increased the degree of crystallinity of the biocomposite samples but reduced their thermal resistance and molecular mass.
Collapse
Affiliation(s)
- Emil Sasimowski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Łukasz Majewski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Marta Grochowicz
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Gliniana 33, 20-614 Lublin, Poland;
| |
Collapse
|
4
|
Sasimowski E, Grochowicz M, Szajnecki Ł. Preparation and Spectroscopic, Thermal, and Mechanical Characterization of Biocomposites of Poly(butylene succinate) and Onion Peels or Durum Wheat Bran. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6799. [PMID: 37895780 PMCID: PMC10607975 DOI: 10.3390/ma16206799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The utilization of plant based fillers: onion peels (OP) and durum wheat bran (WB) to obtain sustainable biocomposite materials with poly(butylene succinate) (PBS) is presented in this paper. The biocomposites were first obtained in pellet form by extrusion method and then injection moldings were made from the pellets. Two kinds of biocomposites were fabricated containing 15% and 30% wt. of OP or WB. Additionally, pure PBS moldings were prepared for comparative purposes. The effect of the filler type and its amount on the chemical structure, density, thermal, and thermo-mechanical properties of the fabricated composite samples was studied. Fourier-transform infrared spectroscopy results showed that the composite preparation method had no effect on the chemical structure of composite components, but weak interactions such as hydrogen bonding between OP or WB and PBS was observed. The addition of OP or WB to the composite with PBS reduced its thermal stability in comparison with pure PBS, all studied composites start to degrade below 290 °C. Additionally, the mechanical properties of the composites are worse than PBS, as the impact strength dropped by about 70%. The deterioration of tensile strength was in the range 20-47%, and the elongation at maximum load of the composites was in the range 9.22-3.42%, whereas for pure PBS it was 16.75%. On the other hand, the crystallinity degree increased from 63% for pure PBS to 79% for composite with 30% wt. of WB. The Young's modulus increased to 160% for composition with 30% wt. of OP. Additionally, the hardness of the composites was slightly higher than PBS and was in the range 38.2-48.7 MPa. Despite the reduction in thermal stability and some mechanical properties, the studied composites show promise for everyday object production.
Collapse
Affiliation(s)
- Emil Sasimowski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Marta Grochowicz
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-614 Lublin, Poland;
| | - Łukasz Szajnecki
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-614 Lublin, Poland;
| |
Collapse
|
5
|
Hiller BT, Azzi JL, Rennert M. Improvement of the Thermo-Oxidative Stability of Biobased Poly(butylene succinate) (PBS) Using Biogenic Wine By-Products as Sustainable Functional Fillers. Polymers (Basel) 2023; 15:polym15112533. [PMID: 37299332 DOI: 10.3390/polym15112533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Biobased poly(butylene succinate) (PBS) represents one promising sustainable alternative to petroleum-based polymers. Its sensitivity to thermo-oxidative degradation is one reason for its limited application. In this research, two different varieties of wine grape pomaces (WPs) were investigated as fully biobased stabilizers. WPs were prepared via simultaneous drying and grinding to be used as bio-additives or functional fillers at higher filling rates. The by-products were characterized in terms of composition and relative moisture, in addition to particle size distribution analysis, TGA, and assays to determine the total phenolic content and the antioxidant activity. Biobased PBS was processed with a twin-screw compounder with WP contents up to 20 wt.-%. The thermal and mechanical properties of the compounds were investigated with DSC, TGA, and tensile tests using injection-molded specimens. The thermo-oxidative stability was determined using dynamic OIT and oxidative TGA measurements. While the characteristic thermal properties of the materials remained almost unchanged, the mechanical properties were altered within expected ranges. The analysis of the thermo-oxidative stability revealed WP as an efficient stabilizer for biobased PBS. This research shows that WP, as a low-cost and biobased stabilizer, improves the thermo-oxidative stability of biobased PBS while maintaining its key properties for processing and technical applications.
Collapse
Affiliation(s)
- Benedikt T Hiller
- Institute for Biopolymers (ibp) at Hof University, Hof University of Applied Sciences, 95028 Hof, Germany
- Plastics Technology Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, 98683 Ilmenau, Germany
| | - Julia L Azzi
- Medical and Biological Physics Program, Faculty of Science, McMaster University, Hamilton, ON L8S 4LD, Canada
| | - Mirko Rennert
- Institute for Biopolymers (ibp) at Hof University, Hof University of Applied Sciences, 95028 Hof, Germany
| |
Collapse
|
6
|
Sasimowski E, Samujło B, Grochowicz M, Majewski Ł. Flammability of Polymer Compositions Filled with Wheat Bran. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8955. [PMID: 36556765 PMCID: PMC9785185 DOI: 10.3390/ma15248955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The article presents the results of flammability tests on polymer compositions with wheat bran (WB) as the applied filler, and polyethylene (PE) or poly(butylene succinate) (PBS) as the matrix material. Tests were conducted using samples of compositions containing 10, 30 and 50%wt wheat bran. The test samples were manufactured by injection moulding from compositions previously produced by extrusion pelleting. For comparative purposes, samples made only of the plastics used for the composition matrix were also examined. Flammability tests were carried out in accordance with the recommendations of EN 60695-11-10 Part 11-10 with horizontal and vertical positioning of the sample, using a universal flammability-test-stand. During the flammability tests, changes in the temperature field in the area of the burning sample were also recorded, using a thermal imaging camera. Sample residues after flammability tests were also examined with infrared spectroscopy (FTIR) to assess their thermal destruction. The results of the study showed a significant increase in flammability with bran content for both PE and PBS matrix compositions. Clear differences were also found in the combustion behaviour of the matrix materials alone. Both the burning rate and maximum flame temperature were lower in favour of PBS. PBS compositions with wheat bran also showed lower flammability, compared with their PE matrix counterparts.
Collapse
Affiliation(s)
- Emil Sasimowski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| | - Bronisław Samujło
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| | - Marta Grochowicz
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-614 Lublin, Poland
| | - Łukasz Majewski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| |
Collapse
|
7
|
Improvement of Interfacial Adhesion and Thermomechanical Properties of PLA Based Composites with Wheat/Rice Bran. Polymers (Basel) 2022; 14:polym14163389. [PMID: 36015647 PMCID: PMC9413742 DOI: 10.3390/polym14163389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The present work aims to enhance the use of agricultural byproducts for the production of bio-composites by melt extrusion. It is well known that in the production of such bio-composites, the weak point is the filler-matrix interface, for this reason the adhesion between a polylactic acid (PLA)/poly(butylene succinate)(PBSA) blend and rice and wheat bran platelets was enhanced by a treatment method applied on the fillers using a suitable beeswax. Moreover, the coupling action of beeswax and inorganic fillers (such as talc and calcium carbonate) were investigated to improve the thermo-mechanical properties of the final composites. Through rheological (MFI), morphological (SEM), thermal (TGA, DSC), mechanical (Tensile, Impact), thermomechanical (HDT) characterizations and the application of analytical models, the optimum among the tested formulations was then selected.
Collapse
|
8
|
Compatibilization strategies and analysis of morphological features of Poly(Butylene Adipate-Co-Terephthalate) (PBAT)/Poly(Lactic Acid) PLA blends: a state-of-art review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Sasimowski E, Majewski Ł, Grochowicz M. Artificial Ageing, Chemical Resistance, and Biodegradation of Biocomposites from Poly(Butylene Succinate) and Wheat Bran. MATERIALS 2021; 14:ma14247580. [PMID: 34947175 PMCID: PMC8705729 DOI: 10.3390/ma14247580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022]
Abstract
The results of comprehensive studies on accelerated (artificial) ageing and biodegradation of polymer biocomposites on PBS matrix filled with raw wheat bran (WB) are presented in this paper. These polymer biocomposites are intended for the manufacture of goods, in particular disposable packaging and disposable utensils, which decompose naturally under the influence of biological agents. The effects of wheat bran content within the range of 10–50 wt.% and extruder screw speed of 50–200 min−1 during the production of biocomposite pellets on the resistance of the products to physical, chemical, and biological factors were evaluated. The research included the determination of the effect of artificial ageing on the changes of structural and thermal properties by infrared spectra (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). They showed structural changes—disruption of chains within the ester bond, which occurred in the composition with 50% bran content as early as after 250 h of accelerated ageing. An increase in the degree of crystallinity with ageing was also found to be as high as 48% in the composition with 10% bran content. The temperature taken at the beginning of weight loss of the compositions studied was also lowered, even by 30 °C at the highest bran content. The changes of mechanical properties of biocomposite samples were also investigated. These include: hardness, surface roughness, transverse shrinkage, weight loss, and optical properties: colour and gloss. The ageing hardness of the biocomposite increased by up to 12%, and the surface roughness (Ra) increased by as much as 2.4 µm at the highest bran content. It was also found that ageing causes significant colour changes of the biocomposition (ΔE = 7.8 already at 10% bran content), and that the ageing-induced weight loss of the biocomposition of 0.31–0.59% is lower than that of the samples produced from PBS alone (1.06%). On the other hand, the transverse shrinkage of moldings as a result of ageing turned out to be relatively small, at 0.05%–0.35%. The chemical resistance of biocomposites to NaOH and HCl as well as absorption of polar and non-polar liquids (oil and water) were also determined. Biodegradation studies were carried out under controlled conditions in compost and weight loss of the tested compositions was determined. The weight of samples made from PBS alone after 70 days of composting decreased only by 4.5%, while the biocomposition with 10% bran content decreased by 15.1%, and with 50% bran, by as much as 68.3%. The measurements carried out showed a significant influence of the content of the applied lignocellulosic fillers (LCF) in the form of raw wheat bran (WB) on the examined properties of the biocompositions and the course of their artificial ageing and biodegradation. Within the range under study, the screw speed of the extruder during the production of biocomposite pellets did not show any significant influence on most of the studied properties of the injection mouldings produced from it.
Collapse
Affiliation(s)
- Emil Sasimowski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
| | - Łukasz Majewski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland;
- Correspondence:
| | - Marta Grochowicz
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska 3, 20-031 Lublin, Poland;
| |
Collapse
|
10
|
Analysis of Selected Properties of Injection Moulded Sustainable Biocomposites from Poly(butylene succinate) and Wheat Bran. MATERIALS 2021; 14:ma14227049. [PMID: 34832449 PMCID: PMC8623204 DOI: 10.3390/ma14227049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
The paper presents a procedure of the manufacturing and complex analysis of the properties of injection mouldings made of polymeric composites based on the poly(butylene succinate) (PBS) matrix with the addition of a natural filler in the form of wheat bran (WB). The scope of the research included measurements of processing shrinkage and density, analysis of the chemical structure, measurements of the thermal and thermo-mechanical properties (Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TG), Heat Deflection Temperature (HDT), and Vicat Softening Temperature (VST)), and measurements of the mechanical properties (hardness, impact strength, and static tensile test). The measurements were performed using design of experiment (DOE) methods, which made it possible to determine the investigated relationships in the form of polynomials and response surfaces. The mass content of the filler and the extruder screw speed during the production of the biocomposite granulate, which was used for the injection moulding of the test samples, constituted the variable factors adopted in the DOE. The study showed significant differences in the processing, thermal, and mechanical properties studied for individual systems of the DOE.
Collapse
|
11
|
Sasimowski E, Majewski Ł, Jachowicz T, Sąsiadek M. Experimental Determination of Coefficients for the Renner Model of the Thermodynamic Equation of State of the Poly(butylene succinate) and Wheat Bran Biocomposites. MATERIALS 2021; 14:ma14185293. [PMID: 34576515 PMCID: PMC8467114 DOI: 10.3390/ma14185293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/27/2023]
Abstract
This paper presents the assumptions of a thermodynamic equation of state for polymers according to the Renner model. The experiments involved extruding a biocomposite based on poly(butylene succinate) that was filled with ground wheat bran with its size not exceeding 200 μm. The biocomposite was produced in pellet form with three different contents by weight of wheat bran, i.e., 10%, 30% and 50%. All specimens were examined for their thermodynamic p-v-T characteristics. Taking advantage of the SimFit module of Cadmould 3D-F, experimental results were used to determine the coefficients of thermodynamic equation of state for the tested biocomposite according to the Renner model. The coefficients were then used to calculate transition temperature and to create diagrams illustrating the relationship between pressure, temperature and specific volume for the tested biocomposite. The obtained results can serve as a basis for assessing the suitability of the biocomposite for injection molding, selecting technological parameters of this process, as well as for analyzing shrinkage and defects of injection-molded parts.
Collapse
Affiliation(s)
- Emil Sasimowski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 36 Nadbystrzycka Street, 20-618 Lublin, Poland; (E.S.); (Ł.M.)
| | - Łukasz Majewski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 36 Nadbystrzycka Street, 20-618 Lublin, Poland; (E.S.); (Ł.M.)
| | - Tomasz Jachowicz
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 36 Nadbystrzycka Street, 20-618 Lublin, Poland; (E.S.); (Ł.M.)
- Correspondence:
| | - Michał Sąsiadek
- Institute of Mechanical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, 4 Prof. Szafrana Street, 65-516 Zielona Góra, Poland;
| |
Collapse
|