1
|
Chen X, Zhou G, Wang X, Xu H, Wang C, Yao Q, Chi J, Fu X, Wang Y, Yin X, Zhang Z. Progress in semiconductor materials for photocathodic protection: Design strategies and applications in marine corrosion protection. CHEMOSPHERE 2023; 323:138194. [PMID: 36828106 DOI: 10.1016/j.chemosphere.2023.138194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Metal protection of offshore equipment is very complicated owing to the complex marine environment. Photocathodic protection (PCP) is one of the popular research topics in marine metal protection. The protection efficiency of photoanode depends largely on the photoelectric properties of semiconductor materials, viz. the process of charge separation, charge migration, and light absorption. In this article, the enhancement strategies, photoelectrochemical properties, and electron transfer mechanisms of different composites for PCP were reviewed and highlighted. Some photoanodes with unusual and striking properties were emphasized. In addition, the outlooks and challenges of the application of PCP and the design of photoanodes materials are proposed.
Collapse
Affiliation(s)
- Xi Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Guangzhu Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xiutong Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui Xu
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cuizhen Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Qiuhui Yao
- The Third Exploration Team, Shandong Bureau of Coal Geology, Tai'an, 271000, China.
| | - Jingyi Chi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xiaoning Fu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Yuanhao Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Xueying Yin
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Zijin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
2
|
Acid-doped polyaniline membranes for solar-driven interfacial evaporation. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Verma C, Hussain CM, Quraishi MA, Rhee KY. Metals and metal oxides polymer frameworks as advanced anticorrosive materials: design, performance, and future direction. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Metals (Ms) and metal oxides (MOs) possess a strong tendency to coordinate and combine with organic polymers to form respective metal–polymer frameworks (MPFs) and metal oxide polymer frameworks (MOPFs). MPFs and MOPFs can be regarded as composites of organic polymers. MPFs and MOPFs are widely used for industrial and biological applications including as anticorrosive materials in the aqueous phase as well as in the coating conditions. The presence of the Ms and MOs in the polymer coatings improves the corrosion inhibition potential of MPFs and MOPFs by improving their self-healing properties. The Ms and MOs fill the micropores and cracks through which corrosive species such as water, oxygen, and corrosive ions and salts can diffuse and destroy the coating structures. Therefore, the Ms and MOs enhance the durability as well as the effectiveness of the polymer coatings. The present review article is intended to describe the corrosion inhibition potential of some MPFs and MOPFs of some most frequently utilized transition metal elements such as Ti, Si, Zn, Ce, Ag, and Au. The mechanism of corrosion inhibition of MPFs and MOPFs is also described in the presence and absence of metal and metal oxides.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Center of Research Excellence in Corrosion , Research Institute, King Fahd University of Petroleum and Minerals , Dhahran 31261 , Saudi Arabia
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , NJ 07102 , USA
| | - Mumtaz A. Quraishi
- Center of Research Excellence in Corrosion , Research Institute, King Fahd University of Petroleum and Minerals , Dhahran 31261 , Saudi Arabia
| | - Kyong Yop Rhee
- Department of Mechanical Engineering (BK21 four) , College of Engineering, Kyung Hee University , Yongin , Republic of Korea
| |
Collapse
|
4
|
AhadiParsa M, Dehghani A, Ramezanzadeh M, Ramezanzadeh B. Rising of MXenes: Novel 2D-functionalized nanomaterials as a new milestone in corrosion science - a critical review. Adv Colloid Interface Sci 2022; 307:102730. [PMID: 35868175 DOI: 10.1016/j.cis.2022.102730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/01/2022]
Abstract
Corrosion is a natural process between a metal and its environment that can gradually cause catastrophic damage to the metal equipment, which would have economic implications. Consequently, several protective methods have been utilized to prevent metals from severe degradation. Organic polymeric coatings have been widely used as the most convenient and cost-effective method to boost metals' anti-corrosion properties. Nonetheless, these coatings have a significant amount of solvent, resulting in shrinkage and micro defects in the films during the curing process. Many studies have verified that transition metal carbides/nitrides (MXenes) can form a "labyrinth effect" in the polymeric coatings due to their "nano-barrier effect". Furthermore, based on their sheet-like structures, they can considerably cover the surface defects of the polymeric films. Therefore, the penetration of corrosive elements can be substantially curbed. It is the first review that specifically focused on the new family of 2D nanomaterials, i.e., MXenes, and discussed their applications in corrosion protection systems. The MXenes' pros and cons in the polymeric matrixes as nanofillers will be clarified. Moreover, the synthesis and functionalization methods of the MXenes, their applications, and corrosion protection mechanism will be explored. Subsequently, the MXenes' superiority over other 2D nanomaterials will be highlighted while their future perspectives and industrial applications will be predicted.
Collapse
Affiliation(s)
- Mobina AhadiParsa
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Ali Dehghani
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Mohammad Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran.
| |
Collapse
|
5
|
Elessawy NA, Gouda MH, Elnouby M, Taha NA, Youssef ME, Santos DMF. Polyvinyl Alcohol/Polyaniline/Carboxylated Graphene Oxide Nanocomposites for Coating Protection of Cast Iron in Simulated Seawater. Polymers (Basel) 2022; 14:polym14091791. [PMID: 35566959 PMCID: PMC9099693 DOI: 10.3390/polym14091791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
In our daily lives and product manufacturing, metal corrosion causes significant economic losses. Numerous polymeric composite coatings have been shown to be resistant to harsh environments, such as those found in marine environments. In this study, a composite of polyvinyl alcohol/polyaniline blend loaded with carboxylated graphene was explored in the search for long-lasting coatings to resist electrochemical deterioration of cast iron in desalination systems of saltwater. Polyvinyl alcohol/polyaniline/carboxylated graphene oxide nanocomposite was spin-coated onto cast iron samples. Electrochemical impedance spectroscopy (EIS) and electrochemical DC corrosion testing with a three-electrode system were used to study corrosion resistance in uncoated and coated cast iron samples. The results exhibit effective corrosion protection properties. The EIS data indicated better capacitance and higher impedance values for coated samples than bare metal, depicting enhanced corrosion resistance against the saline environment. Tafel analysis confirmed a significant decrease in the corrosion rate of the PVA/PANI/GO-COOH coated sample.
Collapse
Affiliation(s)
- Noha A. Elessawy
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
- Correspondence: (N.A.E.); (M.H.G.)
| | - Marwa H. Gouda
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
- Correspondence: (N.A.E.); (M.H.G.)
| | - Mohamed Elnouby
- Nanomaterials and Composites Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Nahla A. Taha
- Modelling and Simulation Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - M. Elsayed Youssef
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Diogo M. F. Santos
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
| |
Collapse
|
6
|
Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR. Polyaniline Synthesized by Different Dopants for Fluorene Detection via Photoluminescence Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7382. [PMID: 34885536 PMCID: PMC8658293 DOI: 10.3390/ma14237382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022]
Abstract
The effects of different dopants on the synthesis, optical, electrical and thermal features of polyaniline were investigated. Polyaniline (PANI) doped with p-toluene sulfonic acid (PANI-PTSA), camphor sulphonic acid (PANI-CSA), acetic acid (PANI-acetic acid) and hydrochloric acid (PANI-HCl) was synthesized through the oxidative chemical polymerization of aniline under acidic conditions at ambient temperature. Fourier transform infrared light, X-ray diffraction, UV-visible spectroscopy, field emission scanning electron microscopy, photoluminescence spectroscopy and electrical analysis were used to define physical and structural features, bandgap values, electrical conductivity and type and degree of doping, respectively. Tauc calculation reveals the optical band gaps of PANI-PTSA, PANI-CSA, PANI-acetic acid and PANI-HCl at 3.1, 3.5, 3.6 and 3.9 eV, respectively. With the increase in dopant size, crystallinity is reduced, and interchain separations and d-spacing are strengthened. The estimated conductivity values of PANI-PTSA, PANI-CSA, PANI-acetic acid and PANI-HCl are 3.84 × 101, 2.92 × 101, 2.50 × 10-2, and 2.44 × 10-2 S·cm-1, respectively. Particularly, PANI-PTSA shows high PL intensity because of its orderly arranged benzenoid and quinoid units. Owing to its excellent synthesis, low bandgap, high photoluminescence intensity and high electrical features, PANI-PTSA is a suitable candidate to improve PANI properties and electron provider for fluorene-detecting sensors with a linear range of 0.001-10 μM and detection limit of 0.26 nM.
Collapse
Affiliation(s)
- Mahnoush Beygisangchin
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang 43400, Malaysia;
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Suraya Abdul Rashid
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang 43400, Malaysia;
| | - Suhaidi Shafie
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, University Putra Malaysia, Serdang 43400, Malaysia
- Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Amir Reza Sadrolhosseini
- Magneto-Plasmonic Laboratory, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran;
| |
Collapse
|