1
|
Sy K, Chevalier C, Maton M, Mokbel I, Mahieux S, Houcke I, Neut C, Grosgogeat B, Deveaux E, Gritsch K, Agossa K. Therapeutic Potential of Chlorhexidine-Loaded Calcium Hydroxide-Based Intracanal Medications in Endo-Periodontal Lesions: An Ex Vivo and In Vitro Study. Antibiotics (Basel) 2023; 12:1416. [PMID: 37760713 PMCID: PMC10525524 DOI: 10.3390/antibiotics12091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Endo-periodontal lesions are challenging clinical situations where both the supporting tissues and the root canal of the same tooth are infected. In the present study, chlorhexidine (CHX)-loaded calcium hydroxide (CH) pastes were used as intracanal medications (ICMs). They were prepared and tested on pathogens found in both the root canal and the periodontal pocket. Exposure to 0.5% and 1% CHX-loaded ICMs decreased the growth of Porphyromonas gingivalis and was effective in eradicating or inhibiting an Enterococcus faecalis biofilm. CH was injected into the root canal of extracted human teeth immersed in deionized water. CHX-loaded ICMs resulted in the transradicular diffusion of active components outside the tooth through the apex and the lateral dentinal tubules, as shown by the release of CHX (from 3.99 µg/mL to 51.28 µg/mL) and changes in pH (from 6.63 to 8.18) and calcium concentrations (from 2.42 ppm to 14.67 ppm) after 7 days. The 0.5% CHX-loaded ICM was non-toxic and reduced the release of IL-6 by periodontal cells stimulated by P. gingivalis lipopolysaccharides. Results indicate that the root canal may serve as a reservoir for periodontal drug delivery and that CHX-based ICMs can be an adjuvant for the control of infections and inflammation in endo-periodontal lesions.
Collapse
Affiliation(s)
- Kadiatou Sy
- U1008, Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (M.M.); (E.D.); (K.A.)
- Faculté d’Odontologie, Hospices Civils de Lyon, Pôle d′Odontologie, Université Lyon 1, Université de Lyon, 69372 Lyon Cedex 08, France; (B.G.); (K.G.)
| | - Charlène Chevalier
- UMR CNRS 5615 Laboratoire des Multimatériaux et Interfaces, Université Lyon 1, 69100 Villeurbanne, France; (C.C.); (I.M.)
| | - Mickaël Maton
- U1008, Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (M.M.); (E.D.); (K.A.)
| | - Ilham Mokbel
- UMR CNRS 5615 Laboratoire des Multimatériaux et Interfaces, Université Lyon 1, 69100 Villeurbanne, France; (C.C.); (I.M.)
| | - Séverine Mahieux
- U1286 Infinite, Institute for Translational Research in Inflammation, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (S.M.); (I.H.); (C.N.)
| | - Isabelle Houcke
- U1286 Infinite, Institute for Translational Research in Inflammation, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (S.M.); (I.H.); (C.N.)
| | - Christel Neut
- U1286 Infinite, Institute for Translational Research in Inflammation, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (S.M.); (I.H.); (C.N.)
| | - Brigitte Grosgogeat
- Faculté d’Odontologie, Hospices Civils de Lyon, Pôle d′Odontologie, Université Lyon 1, Université de Lyon, 69372 Lyon Cedex 08, France; (B.G.); (K.G.)
| | - Etienne Deveaux
- U1008, Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (M.M.); (E.D.); (K.A.)
| | - Kerstin Gritsch
- Faculté d’Odontologie, Hospices Civils de Lyon, Pôle d′Odontologie, Université Lyon 1, Université de Lyon, 69372 Lyon Cedex 08, France; (B.G.); (K.G.)
| | - Kevimy Agossa
- U1008, Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, Université de Lille, 59000 Lille, France; (M.M.); (E.D.); (K.A.)
| |
Collapse
|
2
|
Hardan L, Chedid JCA, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Tosco V, Monjarás-Ávila AJ, Jabra M, Salloum-Yared F, Kharouf N, Mancino D, Haikel Y. Peptides in Dentistry: A Scoping Review. Bioengineering (Basel) 2023; 10:bioengineering10020214. [PMID: 36829708 PMCID: PMC9952573 DOI: 10.3390/bioengineering10020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Currently, it remains unclear which specific peptides could be appropriate for applications in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific papers related to the types, uses and applications of peptides in dentistry at the moment. Literature database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related applications were included. The studies involved experimental designs in animals, microorganisms, or cells; clinical trials were also identified within this review. Most of the applications of peptides included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth implants, and the modification of other restorative materials such as dental adhesives and denture base resins. The in vitro and in vivo studies included in this review suggested that peptides may have beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available for the investigation of peptides in dentistry.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Jean Claude Abou Chedid
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | | | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology (DISCO), Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ana Josefina Monjarás-Ávila
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | - Massa Jabra
- Faculty of Medicine, Damascus University, Damascus 0100, Syria
| | | | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
- Correspondence: (C.E.C.-S.); (N.K.); (Y.H.); Tel.: +52-(771)-72000 (C.E.C.-S.)
| |
Collapse
|
3
|
Zhang Q, Yu S, Hu M, Liu Z, Yu P, Li C, Zhang X. Antibacterial and Anti-Inflammatory Properties of Peptide KN-17. Microorganisms 2022; 10:2114. [PMID: 36363705 PMCID: PMC9699635 DOI: 10.3390/microorganisms10112114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 08/02/2023] Open
Abstract
Peri-implantitis, an infectious disease originating from dental biofilm that forms around dental implants, which causes the loss of both osseointegration and bone tissue. KN-17, a truncated cecropin B peptide, demonstrated efficacy against certain bacterial strains associated with peri-implantitis. This study aimed to assess the antibacterial and anti-inflammatory properties and mechanisms of KN-17. The effects of KN-17 on oral pathogenic bacteria were assessed by measuring its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Moreover, the cytotoxicity and anti-inflammatory effects of KN-17 were evaluated. KN-17 inhibited the growth of Streptococcus gordonii and Fusobacterium nucleatum during in vitro biofilm formation and possessed low toxicity to hBMSCs cells. KN-17 also caused RAW264.7 macrophages to transform from M1 to M2 by downregulating pro-inflammatory and upregulating anti-inflammatory factors. It inhibited the NF-κB signaling pathway by reducing IκBα and P65 protein phosphorylation while promoting IκBα degradation and nuclear P65 translocation. KN-17 might be an efficacious prophylaxis against peri-implant inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Shuipeng Yu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Meilin Hu
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Zhiyang Liu
- College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Pei Yu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, 39 Huangsha Avenue, Guangzhou 510150, China
| | - Changyi Li
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| | - Xi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, China
| |
Collapse
|
4
|
Sy K, Agossa K, Maton M, Chijcheapaza-Flores H, Martel B, Siepmann F, Deveaux E, Blanchemain N, Neut C. How Adding Chlorhexidine or Metallic Nanoparticles Affects the Antimicrobial Performance of Calcium Hydroxide Paste as an Intracanal Medication: An In Vitro Study. Antibiotics (Basel) 2021; 10:antibiotics10111352. [PMID: 34827289 PMCID: PMC8614750 DOI: 10.3390/antibiotics10111352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to explore the potential value of metallic (Ag, Cu, and Zn) salts, polymer/metallic nanoparticles, and chlorhexidine (CHX) for improving the antimicrobial activity of calcium hydroxide (CH) against E. faecalis and C. albicans, associated with persistent endodontic infections. A first screening was performed by determining minimum inhibitory/bactericidal concentrations (MIC/MBC). Antimicrobial activity of the CH paste mixed with metallic salts, chitosan or cyclodextrin polymer metallic nanoparticles was compared to the antimicrobial activity of CH paste alone and CH + CHX using a time-kill kinetics assay. The effect of the antimicrobials on the rheological and the key mechanical properties were also examined. Copper and zinc were discarded because of their MIC/MBC values and silver because of its kill time curve profile. Except for a slower setting time after 24 h and a higher weight loss after 1 week of incubation, the mechanical behavior of the CH paste was unaffected by the addition of CHX. Polymeric/metallic nanoparticles failed to potentiate the antimicrobial effect of CH. By contrast, CHX increased this effect and thus could help eradicate E. faecalis associated with persistent root canal infections without altering the desired key physical properties of the CH paste.
Collapse
Affiliation(s)
- Kadiatou Sy
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
- Correspondence:
| | - Kevimy Agossa
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Mickaël Maton
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Henry Chijcheapaza-Flores
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Bernard Martel
- UMR 8207, UMET—Unité Matériaux et Transformations, CNRS—Centre National de la Recherche Scientifique, INRA—Institut National de la Recherche Agronomique, ENSCL—Ecole Nationale Supérieure de Chimie de Lille, University of Lille, 59655 Lille, France;
| | - Florence Siepmann
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Etienne Deveaux
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Nicolas Blanchemain
- U1008—Controlled Drug Delivery Systems and Biomaterials, Inserm, CHU Lille, University of Lille, 59000 Lille, France; (K.A.); (M.M.); (H.C.-F.); (F.S.); (E.D.); (N.B.)
| | - Christel Neut
- U1286 Infinite—Institute for Translational Research in Inflammation, Inserm, CHU Lille, University of Lille, 59000 Lille, France;
| |
Collapse
|