1
|
Scattolin E, Benedet M, Rizzi GA, Gasparotto A, Lebedev OI, Barreca D, Maccato C. Graphitic Carbon Nitride Structures on Carbon Cloth Containing Ultra- and Nano-Dispersed NiO for Photoactivated Oxygen Evolution. CHEMSUSCHEM 2024:e202400948. [PMID: 38979913 DOI: 10.1002/cssc.202400948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Indexed: 07/10/2024]
Abstract
The development of low-cost and high-efficiency oxygen evolution reaction (OER) photoelectrocatalysts is a key requirement for H2 generation via solar-assisted water splitting. In this study, we report on an amenable fabrication route to carbon cloth-supported graphitic carbon nitride (gCN) nanoarchitectures, featuring a modular dispersion of NiO as co-catalyst. The synergistic interaction between gCN and NiO, along with the tailoring of their size and spatial distribution, yield very attractive OER performances and durability in freshwater splitting, of great significance for practical end-uses. The potential of gCN electrocatalysts containing ultra-dispersed, i. e. "quasi-atomic" NiO, exhibiting a higher activity than the ones containing nickel oxide nanoaggregates, is further highlighted by their activity even in real seawater. This work suggests that efficient OER catalysts can be designed through the construction of optimized interfaces between transition metal oxides and carbon nitride, yielding inexpensive and promising noble metal-free systems for real-world applications.
Collapse
Affiliation(s)
- Enrico Scattolin
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
| | - Mattia Benedet
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| | - Alberto Gasparotto
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| | - Oleg I Lebedev
- Laboratoire CRISMAT, UMR 6508, Normandie Université CNRS, ENSICAEN, UNICAEN, 6, Boulevard Marechal Juin, 14050, Caen, Cedex 4, France
| | - Davide Barreca
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| | - Chiara Maccato
- Department of Chemical Sciences, Padova University and INSTM, Via Marzolo 1, 35131, Padova, Italy
- CNR-ICMATE and INSTM, Department of Chemical Sciences, Padova University, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
2
|
Chin JY, Ahmad AL, Low SC. Antibiotics oxytetracycline removal by photocatalyst titanium dioxide and graphitic carbon nitride in aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118231. [PMID: 37247545 DOI: 10.1016/j.jenvman.2023.118231] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
The surge in the use of antibiotics, especially in aquaculture, has led to development of antibiotic resistance genes, which will harm environmental and public health. One of the most commonly used antibiotics in aquaculture is oxytetracycline (OTC). Employing photocatalysis, this study compared OTC degradation efficiency of two different types of common photocatalysts, TiO2 and graphitic carbon nitride (GCN) in terms of their photochemical properties and underlying photocatalytic mechanism. For reference purpose, self-synthesized GCN from urea precursor (GCN-Urea) and commercial GCN (GCN-Commercial) were both examined. OTC adsorption-photocatalysis removal rates in pure OTC solution by TiO2, GCN-Urea and GCN-Commercial were attained at 95%, 60% and 40% respectively. Photochemical properties evaluated included light absorption, band gap, valence and conduction band positions, photoluminescence, cyclic voltammetry, BET surface area and adsorption capability of the photocatalysts. Through the evaluations, this study provides novel insights towards current state-of-the-art heterogeneous photocatalytic processes. The electron-hole recombination examined by photoluminescence is not the key factor influencing the photocatalytic efficacies as commonly discussed. On the contrary, the dominating factors governing the higher OTC degradation efficiency of TiO2 compared to GCN are the high mobility of electrons that leads to high redox capability and the high pollutant-photocatalyst affinity. These claims are proven by 86% and 40% more intense anodic and cathodic cyclic voltammetry curve peaks of TiO2 as compared to both GCNs. OTC also demonstrated 1.7 and 2.3 times higher affinity towards TiO2 than GCN-Urea and GCN-Commercial. OTC removal by TiO2 in real aquaculture wastewater only achieved 50%, due to significant inhibition effect by dissolved solids, dissolved organic matters and high ionic contents in the wastewater.
Collapse
Affiliation(s)
- Jing Yi Chin
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Siew Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Xiao Y, Tian X, Chen Y, Xiao X, Chen T, Wang Y. Recent Advances in Carbon Nitride-Based S-scheme Photocatalysts for Solar Energy Conversion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103745. [PMID: 37241371 DOI: 10.3390/ma16103745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Energy shortages are a major challenge to the sustainable development of human society, and photocatalytic solar energy conversion is a potential way to alleviate energy problems. As a two-dimensional organic polymer semiconductor, carbon nitride is considered to be the most promising photocatalyst due to its stable properties, low cost, and suitable band structure. Unfortunately, pristine carbon nitride has low spectral utilization, easy recombination of electron holes, and insufficient hole oxidation ability. The S-scheme strategy has developed in recent years, providing a new perspective for effectively solving the above problems of carbon nitride. Therefore, this review summarizes the latest progress in enhancing the photocatalytic performance of carbon nitride via the S-scheme strategy, including the design principles, preparation methods, characterization techniques, and photocatalytic mechanisms of the carbon nitride-based S-scheme photocatalyst. In addition, the latest research progress of the S-scheme strategy based on carbon nitride in photocatalytic H2 evolution and CO2 reduction is also reviewed. Finally, some concluding remarks and perspectives on the challenges and opportunities for exploring advanced nitride-based S-scheme photocatalysts are presented. This review brings the research of carbon nitride-based S-scheme strategy to the forefront and is expected to guide the development of the next-generation carbon nitride-based S-scheme photocatalysts for efficient energy conversion.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xu Tian
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yunhua Chen
- Department of Physics, Yunnan University, Kunming 650504, China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Ting Chen
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China
| |
Collapse
|