1
|
Liu S, Han Y, Kong L, Wang G, Ye Z. Atomic force microscopy in disease-related studies: Exploring tissue and cell mechanics. Microsc Res Tech 2024; 87:660-684. [PMID: 38063315 DOI: 10.1002/jemt.24471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/22/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Despite significant progress in human medicine, certain diseases remain challenging to promptly diagnose and treat. Hence, the imperative lies in the development of more exhaustive criteria and tools. Tissue and cellular mechanics exhibit distinctive traits in both normal and pathological states, suggesting that "force" represents a promising and distinctive target for disease diagnosis and treatment. Atomic force microscopy (AFM) holds great promise as a prospective clinical medical device due to its capability to concurrently assess surface morphology and mechanical characteristics of biological specimens within a physiological setting. This review presents a comprehensive examination of the operational principles of AFM and diverse mechanical models, focusing on its applications in investigating tissue and cellular mechanics associated with prevalent diseases. The findings from these studies lay a solid groundwork for potential clinical implementations of AFM. RESEARCH HIGHLIGHTS: By examining the surface morphology and assessing tissue and cellular mechanics of biological specimens in a physiological setting, AFM shows promise as a clinical device to diagnose and treat challenging diseases.
Collapse
Affiliation(s)
- Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
2
|
Zbiral B, Weber A, Vivanco MDM, Toca-Herrera JL. Characterization of Breast Cancer Aggressiveness by Cell Mechanics. Int J Mol Sci 2023; 24:12208. [PMID: 37569585 PMCID: PMC10418463 DOI: 10.3390/ijms241512208] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In healthy tissues, cells are in mechanical homeostasis. During cancer progression, this equilibrium is disrupted. Cancer cells alter their mechanical phenotype to a softer and more fluid-like one than that of healthy cells. This is connected to cytoskeletal remodeling, changed adhesion properties, faster cell proliferation and increased cell motility. In this work, we investigated the mechanical properties of breast cancer cells representative of different breast cancer subtypes, using MCF-7, tamoxifen-resistant MCF-7, MCF10A and MDA-MB-231 cells. We derived viscoelastic properties from atomic force microscopy force spectroscopy measurements and showed that the mechanical properties of the cells are associated with cancer cell malignancy. MCF10A are the stiffest and least fluid-like cells, while tamoxifen-resistant MCF-7 cells are the softest ones. MCF-7 and MDA-MB-231 show an intermediate mechanical phenotype. Confocal fluorescence microscopy on cytoskeletal elements shows differences in actin network organization, as well as changes in focal adhesion localization. These findings provide further evidence of distinct changes in the mechanical properties of cancer cells compared to healthy cells and add to the present understanding of the complex alterations involved in tumorigenesis.
Collapse
Affiliation(s)
- Barbara Zbiral
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Andreas Weber
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Maria dM. Vivanco
- Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain;
| | - José L. Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| |
Collapse
|
3
|
Zhang X, Zhao P, Ma M, Wu H, Liu R, Liu Z, Cai Z, Liu M, Xie F, Ma X. Missing link between tissue specific expressing pattern of ERβ and the clinical manifestations in LGBLEL. Front Med (Lausanne) 2023; 10:1168977. [PMID: 37457559 PMCID: PMC10346852 DOI: 10.3389/fmed.2023.1168977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Lacrimal gland benign lymphoepithelial lesion (LGBLEL) is an IgG4-related disease of unknown etiology with a risk for malignant transformation. Estrogen is considered to be related to LGBLEL onset. Methods Seventy-eight LGBLEL and 13 control clinical samples were collected and studied to determine the relationship between estrogen and its receptors and LGBLEL development. Results The serological analysis revealed no significant differences in the levels of three estrogens be-tween the LGBLEL and control groups. However, immunohistochemical analyses indicated that the expression levels of ERβ and its downstream receptor RERG were relatively lower in LGBLEL samples than in control samples, with higher expression in the lacrimal gland and lower expression in the lymphocyte infiltration region. However, low expression of ERα was detected. The transcriptome sequence analysis revealed upregulated genes associated with LGBLEL enriched in lymphocyte proliferation and activation function; downregulated genes were enriched in epithelial and vascular proliferation functions. The key genes and gene networks were further analyzed. Interactions between B cells and epithelial cells were analyzed due to the identified involvement of leukocyte subsets and epithelial cells. B cell proliferation was found to potentially contribute to lacrimal gland apoptosis. Conclusion Therefore, the tissue-heterogeneous expression pattern of ERβ is potentially related to the clinical manifestations and progression of LGBLEL, although further investigations are required to confirm this finding.
Collapse
Affiliation(s)
- Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Mingshen Ma
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Rui Liu
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ziyi Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Zisong Cai
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing Molecular Hydrogen Research Center, Beijing, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, China
| |
Collapse
|
4
|
Weber A, Vivanco MDM, Toca-Herrera JL. Application of self-organizing maps to AFM-based viscoelastic characterization of breast cancer cell mechanics. Sci Rep 2023; 13:3087. [PMID: 36813800 PMCID: PMC9947176 DOI: 10.1038/s41598-023-30156-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Cell mechanical properties have been proposed as label free markers for diagnostic purposes in diseases such as cancer. Cancer cells show altered mechanical phenotypes compared to their healthy counterparts. Atomic Force Microscopy (AFM) is a widely utilized tool to study cell mechanics. These measurements often need skilful users, physical modelling of mechanical properties and expertise in data interpretation. Together with the need to perform many measurements for statistical significance and to probe wide enough areas in tissue structures, the application of machine learning and artificial neural network techniques to automatically classify AFM datasets has received interest recently. We propose the use of self-organizing maps (SOMs) as unsupervised artificial neural network applied to mechanical measurements performed via AFM on epithelial breast cancer cells treated with different substances that affect estrogen receptor signalling. We show changes in mechanical properties due to treatments, as estrogen softened the cells, while resveratrol led to an increase in cell stiffness and viscosity. These data were then used as input for SOMs. Our approach was able to distinguish between estrogen treated, control and resveratrol treated cells in an unsupervised manner. In addition, the maps enabled investigation of the relationship of the input variables.
Collapse
Affiliation(s)
- Andreas Weber
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Maria dM Vivanco
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Technological Park of Bizkaia, Derio, Spain
| | - José L Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| |
Collapse
|
5
|
Weber A, Tyrakowski D, Toca-Herrera JL. Power Laws Describe Bacterial Viscoelasticity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15552-15558. [PMID: 36484724 PMCID: PMC9776528 DOI: 10.1021/acs.langmuir.2c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Bacterial cells survive in a wide range of different environments and actively tune their mechanical properties for purposes of growth, movement, division, and nutrition. In Gram-negative bacteria, the cell envelope with its outer membrane and peptidoglycan are the main determinants of mechanical properties and are common targets for the use of antibiotics. The study of bacterial mechanical properties has shown promise in elucidating a structure-function relationship in bacteria, connecting, shape, mechanics, and biochemistry. In this work, we study frequency and time-dependent viscoelastic properties of E. coli cells by atomic force microscopy (AFM). We perform force cycles, oscillatory microrheology, stress relaxation, and creep experiments, and use power law rheology models to fit the experimental results. All data sets could be fitted with the models and provided power law exponents of 0.01 to 0.1 while showing moduli in the range of a few MPa. We provide evidence for the interchangeability of the properties derived from these four different measurement approaches.
Collapse
|
6
|
Gil-Redondo JC, Weber A, Zbiral B, Vivanco MDM, Toca-Herrera JL. Substrate stiffness modulates the viscoelastic properties of MCF-7 cells. J Mech Behav Biomed Mater 2021; 125:104979. [PMID: 34826769 DOI: 10.1016/j.jmbbm.2021.104979] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/27/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023]
Abstract
Cells sense stiffness of surrounding tissues and adapt their activity, proliferation, motility and mechanical properties based on such interactions. Cells probe the stiffness of the substrate by anchoring and pulling to their surroundings, transmitting force to the extracellular matrix and other cells, and respond to the resistance they sense, mainly through changes in their cytoskeleton. Cancer and other diseases alter stiffness of tissues, and the response of cancer cells to this stiffness can also be affected. In the present study we show that MCF-7 breast cancer cells seeded on polyacrylamide gels have the ability to detect the stiffness of the substrate and alter their mechanical properties in response. MCF-7 cells plated on soft substrates display lower stiffness and viscosity when compared to those seeded on stiffer gels or glass. These differences can be associated with differences in the morphology and cytoskeleton organisation, since cells seeded on soft substrates have a round morphology, while cells seeded on stiffer substrates acquire a flat and spread morphology with formation of actin filaments, similar to that observed when seeded on glass. These findings show that MCF-7 cells can detect the stiffness of the surrounding microenvironment and thus, modify their mechanical properties.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - Andreas Weber
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - Barbara Zbiral
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC BioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48160, Derio, Spain.
| | - José L Toca-Herrera
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|