1
|
Luo Z, Rong P, Yang Z, Zhang J, Zou X, Yu Q. Preparation and Application of Co-Doped Zinc Oxide: A Review. Molecules 2024; 29:3373. [PMID: 39064951 PMCID: PMC11279694 DOI: 10.3390/molecules29143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Due to a wide band gap and large exciton binding energy, zinc oxide (ZnO) is currently receiving much attention in various areas, and can be prepared in various forms including nanorods, nanowires, nanoflowers, and so on. The reliability of ZnO produced by a single dopant is unstable, which in turn promotes the development of co-doping techniques. Co-doping is a very promising technique to effectively modulate the optical, electrical, magnetic, and photocatalytic properties of ZnO, as well as the ability to form various structures. In this paper, the important advances in co-doped ZnO nanomaterials are summarized, as well as the preparation of co-doped ZnO nanomaterials by using different methods, including hydrothermal, solvothermal, sol-gel, and acoustic chemistry. In addition, the wide range of applications of co-doped ZnO nanomaterials in photocatalysis, solar cells, gas sensors, and biomedicine are discussed. Finally, the challenges and future prospects in the field of co-doped ZnO nanomaterials are also elucidated.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Yu
- Shaanxi Laboratory of Catalysis, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.L.); (P.R.); (Z.Y.); (J.Z.); (X.Z.)
| |
Collapse
|
2
|
Tanuj, Kumar R, Kumar S, Kalra N, Sharma S, Singh A. Exploitation of green synthesized chromium doped zinc oxide nanorods (NRs) mediated by flower extract of Rhododendron arboreum for highly efficient photocatalytic degradation of cationic dyes Malachite green (MG) and Fuchsin basic (FB). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1193-1211. [PMID: 38226539 DOI: 10.1080/15226514.2023.2300406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this work, green method to synthesize chromium-doped zinc oxide (ZnO) nanorods (NRs) using an aqueous flower extract from Rhododendron arboretum is explored. Herein, chromium-doped ZnO NRs were prepared with different amount of chromium doping, varied as 2-10%. The green synthesized products underwent substantial analysis through X-ray diffraction (XRD), spectroscopic such as ultraviolet spectroscopy(UV-Vis) and scanning electron microscopy (SEM) methods. All samples were found to have hexagonal wurtzite ZnO, with average particle sizes of 52.41, 56.6, 54.44, 53.05, and 56.99 nm, respectively, for 2, 4, 6, 8, and 10% chromium doping in ZnO NRs. The Cr-doped ZnO NRs exhibited remarkable photocatalytic degradation activity of cationic dyes under UV-light, i.e., Malachite Green and Fuchsin Basic with degradation of 99.604 and 99.881%, respectively in 90 min. The reusability tests for these green synthesized Cr-doped ZnO NRs have also been carried out, showed 9-11 cycles with 85% of degradation efficiency. In addition, the Cr-doped ZnO NRs exhibited high selectivity for cationic dyes when experiments against mixture of dyes were performed. Photodegradation kinetics followed the pseudo-first-order model. The flower-extract-stabilized chromium-doped ZnO NRs demonstrated high photocatalytic activity toward malachite green and fuchsin basic dyes, potential material for pollution remediation.
Collapse
Affiliation(s)
- Tanuj
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Santosh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Neerja Kalra
- Department of Chemistry, Government College, Ateli, Haryana, India
| | - Subhash Sharma
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C, México
| | - Amritpal Singh
- Department of Pure of Applied Chemistry, Strathclyde University, Glasgow, UK
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
3
|
Zhang X, Liu D, Liu S, Cai Y, Shan L, Chen C, Chen H, Liu Y, Guo T, Chen H. Toward Intelligent Display with Neuromorphic Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401821. [PMID: 38567884 DOI: 10.1002/adma.202401821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/19/2024] [Indexed: 04/16/2024]
Abstract
In the era of the Internet and the Internet of Things, display technology has evolved significantly toward full-scene display and realistic display. Incorporating "intelligence" into displays is a crucial technical approach to meet the demands of this development. Traditional display technology relies on distributed hardware systems to achieve intelligent displays but encounters challenges stemming from the physical separation of sensing, processing, and light-emitting modules. The high energy consumption and data transformation delays limited the development of intelligence display, breaking the physical separation is crucial to overcoming the bottlenecks of intelligence display technology. Inspired by the biological neural system, neuromorphic technology with all-in-one features is widely employed across various fields. It proves effective in reducing system power consumption, facilitating frequent data transformation, and enabling cross-scene integration. Neuromorphic technology shows great potential to overcome display technology bottlenecks, realizing the full-scene display and realistic display with high efficiency and low power consumption. This review offers a comprehensive summary of recent advancements in the application of neuromorphic technology in displays, with a focus on interoperability. This work delves into its state-of-the-art designs and potential future developments aimed at revolutionizing display technology.
Collapse
Affiliation(s)
- Xianghong Zhang
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350100, China
| | - Di Liu
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350100, China
| | - Shuai Liu
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350100, China
| | - Yongjie Cai
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350100, China
| | - Liuting Shan
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350100, China
| | - Cong Chen
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350100, China
| | - Huimei Chen
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350100, China
| | - Yaqian Liu
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, China
| | - Tailiang Guo
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350100, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National and Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350100, China
| |
Collapse
|
4
|
Belaid W, Gezgin SY, Basyooni-M Kabatas MA, Eker YR, Kiliç HŞ. Utilizing Gold Nanoparticle Decoration for Enhanced UV Photodetection in CdS Thin Films Fabricated by Pulsed Laser Deposition: Exploiting Plasmon-Induced Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:416. [PMID: 38470747 DOI: 10.3390/nano14050416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
UV sensors hold significant promise for various applications in both military and civilian domains. However, achieving exceptional detectivity, responsivity, and rapid rise/decay times remains a notable challenge. In this study, we address this challenge by investigating the photodetection properties of CdS thin films and the influence of surface-deposited gold nanoparticles (AuNPs) on their performance. CdS thin films were produced using the pulsed laser deposition (PLD) technique on glass substrates, with CdS layers at a 100, 150, and 200 nm thickness. Extensive characterization was performed to evaluate the thin films' structural, morphological, and optical properties. Photodetector devices based on CdS and AuNPs/CdS films were fabricated, and their performance parameters were evaluated under 365 nm light illumination. Our findings demonstrated that reducing CdS layer thickness enhanced performance concerning detectivity, responsivity, external quantum efficiency (EQE), and photocurrent gain. Furthermore, AuNP deposition on the surface of CdS films exhibited a substantial influence, especially on devices with thinner CdS layers. Among the configurations, AuNPs/CdS(100 nm) demonstrated the highest values in all evaluated parameters, including detectivity (1.1×1012 Jones), responsivity (13.86 A/W), EQE (47.2%), and photocurrent gain (9.2).
Collapse
Affiliation(s)
- Walid Belaid
- Department of Physics, Faculty of Science, Selçuk University, Konya 42075, Turkey
| | - Serap Yiğit Gezgin
- Department of Physics, Faculty of Science, Selçuk University, Konya 42075, Turkey
| | - Mohamed A Basyooni-M Kabatas
- Dynamics of Micro and Nano Systems Group, Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
- Solar Research Laboratory, Solar and Space Research Department, National Research Institute of Astronomy and Geophysics, Cairo 11421, Egypt
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey
| | - Yasin Ramazan Eker
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Hamdi Şükür Kiliç
- Department of Physics, Faculty of Science, Selçuk University, Konya 42075, Turkey
- Directorate of High Technology Research and Application Center, University of Selçuk, Konya 42031, Turkey
- Directorate of Laser-Induced Proton Therapy Application and Research Center, University of Selçuk, Konya 42031, Turkey
| |
Collapse
|
5
|
Asvarov AS, Muslimov AE, Makhmudov SS, Kanevsky VM. A Porous Nanostructured ZnO Layer for Ultraviolet Sensing with Quartz Crystal Microbalance Technique. MICROMACHINES 2023; 14:1584. [PMID: 37630120 PMCID: PMC10456875 DOI: 10.3390/mi14081584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Porous films of metals and metal oxides have gained growing attention as potential materials for use in applications that require large, specific surface areas, such as sensors, supercapacitors, and batteries. In this study, a "black-metal"-like porous Zn-ZnO composite layer was grown by room temperature co-sputtering of Zn metal and ZnO:Ga (3 at/%) ceramic targets. Following deposition, a porous ZnO layer was obtained by a subsequent thermal annealing process at 400 °C in air. The morphology and structural properties of the obtained porous layered objects were analyzed. The porosity and chemical characteristics of the nanostructured ZnO layer obtained with the method herein described make it suitable to be used as a sensitivity-enhancing active layered element in quartz crystal microbalance (QCM)-based ultraviolet (UV) sensors. The prepared resonant ZnO/QCM sensors under UV radiation exhibited maximum shift up to 35 Hz for several "on-off" UV cycles, excellent response, and recovery times of 11 and 12 s, respectively.
Collapse
Affiliation(s)
- Abil S. Asvarov
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninsky Prospect, 59, 119333 Moscow, Russia; (A.E.M.); (V.M.K.)
| | - Arsen E. Muslimov
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninsky Prospect, 59, 119333 Moscow, Russia; (A.E.M.); (V.M.K.)
| | - Soslan S. Makhmudov
- Institute of Physics, Dagestan Federal Research Center, Russian Academy Sciences, Yaragskogo Str., 94, 367015 Makhachkala, Russia;
| | - Vladimir M. Kanevsky
- Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Leninsky Prospect, 59, 119333 Moscow, Russia; (A.E.M.); (V.M.K.)
| |
Collapse
|
6
|
Gartner M, Stroescu H, Mitrea D, Nicolescu M. Various Applications of ZnO Thin Films Obtained by Chemical Routes in the Last Decade. Molecules 2023; 28:4674. [PMID: 37375229 PMCID: PMC10304324 DOI: 10.3390/molecules28124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
This review addresses the importance of Zn for obtaining multifunctional materials with interesting properties by following certain preparation strategies: choosing the appropriate synthesis route, doping and co-doping of ZnO films to achieve conductive oxide materials with p- or n-type conductivity, and finally adding polymers in the oxide systems for piezoelectricity enhancement. We mainly followed the results of studies of the last ten years through chemical routes, especially by sol-gel and hydrothermal synthesis. Zinc is an essential element that has a special importance for developing multifunctional materials with various applications. ZnO can be used for the deposition of thin films or for obtaining mixed layers by combining ZnO with other oxides (ZnO-SnO2, ZnO-CuO). Also, composite films can be achieved by mixing ZnO with polymers. It can be doped with metals (Li, Na, Mg, Al) or non-metals (B, N, P). Zn is easily incorporated in a matrix and therefore it can be used as a dopant for other oxidic materials, such as: ITO, CuO, BiFeO3, and NiO. ZnO can be very useful as a seed layer, for good adherence of the main layer to the substrate, generating nucleation sites for nanowires growth. Thanks to its interesting properties, ZnO is a material with multiple applications in various fields: sensing technology, piezoelectric devices, transparent conductive oxides, solar cells, and photoluminescence applications. Its versatility is the main message of this review.
Collapse
Affiliation(s)
| | - Hermine Stroescu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Daiana Mitrea
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | | |
Collapse
|
7
|
Ren Y, Tian Z, Zhang Y, Wu F, Xie H, Zhang Q, Zhang P, Sun Z. In-Situ Growth of ZnO Whiskers on Ti 2ZnC MAX Phases. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103610. [PMID: 37241237 DOI: 10.3390/ma16103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
ZnO whiskers have many applications, such as in medical and photocatalysis fields. In this study, an unconventional preparation approach is reported, realizing the in-situ growth of ZnO whiskers on Ti2ZnC. The weak bonding between the layer of Ti6C-octahedron and the Zn-atom layers leads to the easy extraction of Zn atoms from Ti2ZnC lattice points, resulting in the formation of ZnO whiskers on the Ti2ZnC surface. This is the first time that ZnO whiskers have been found to grow in-situ on Ti2ZnC substrate. Further, this phenomenon is amplified when the size of the Ti2ZnC grains is mechanically reduced by ball-milling, which bodes a promising route to prepare ZnO in-situ on a large scale. Additionally, this finding can also help us better understand the stability of Ti2ZnC and the whiskering mechanism of MAX phases.
Collapse
Affiliation(s)
- Yinan Ren
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Zhihua Tian
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Fushuo Wu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Hao Xie
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
- Liyang Zichen New Material Technology Co., Ltd., Changzhou 213000, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Peigen Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Zhengming Sun
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Statistical Simulation of the Switching Mechanism in ZnO-Based RRAM Devices. MATERIALS 2022; 15:ma15031205. [PMID: 35161148 PMCID: PMC8840720 DOI: 10.3390/ma15031205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
Resistive random access memory (RRAM) has two distinct processes, the SET and RESET processes, that control the formation and dissolution of conductive filament, respectively. The laws of thermodynamics state that these processes correspond to the lowest possible level of free energy. In an RRAM device, a high operating voltage causes device degradation, such as bends, cracks, or bubble-like patterns. In this work, we developed a statistical simulation of the switching mechanism in a ZnO-based RRAM. The model used field-driven ion migration and temperature effects to design a ZnO-based RRAM dynamic SET and RESET resistance transition process. We observed that heat transport within the conducting filament generated a great deal of heat energy due to the carrier transport of the constituent dielectric material. The model was implemented using the built-in COMSOL Multiphysics software to address heat transfer, electrostatic, and yield RRAM energy. The heat energy increased with the increase in the operating power. Hence, the reliability of a device with high power consumption cannot be assured. We obtained various carrier heat analyses in 2D images and concluded that developing RRAM devices with low operating currents through material and structure optimization is crucial.
Collapse
|