1
|
Tessore F, Pargoletti E, Di Carlo G, Albanese C, Soave R, Trioni MI, Marelli F, Cappelletti G. How the Interplay between SnO 2 and Zn(II) Porphyrins Impacts on the Electronic Features of Gaseous Acetone Chemiresistors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39049749 DOI: 10.1021/acsami.4c05478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Herein, the integration of SnO2 nanoparticles with two Zn(II) porphyrins─Zn(II) 5,10,15,20-tetraphenylporphyrin (ZnTPP) and its perfluorinated counterpart, Zn(II) 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (ZnTPPF20)─was investigated for the sensing of gaseous acetone at 120 °C, adopting three Zn-porphyrin/SnO2 weight ratios (1:4, 1:32, and 1:64). For the first time, we were able to provide evidence of the correlation between the materials' conductivity and these nanocomposites' sensing performances, obtaining optimal results with a 1:32 ratio for ZnTPPF20/SnO2 and showcasing a remarkable detection limit of 200 ppb together with a boosted sensing signal with respect to bare SnO2. To delve deeper, the combination of experimental data with density functional theory calculations unveiled an electron-donating behavior of both porphyrins when interacting with tin dioxide semiconductor, especially for the nonfluorinated one. The study suggested that the interplay between electrons injected, from the porphyrins' highest occupied molecular orbital to SnO2 conduction band, and the latter's available electronic states has a dramatic impact to boost the chemiresistive sensing. Indeed, we highlighted that the key lies in preventing the full saturation of SnO2 electronic states concomitantly increasing the materials' conductivity: in this respect, the best compromise turned out to be the perfluorinated porphyrin. A further corroboration of our findings was obtained by illuminating the sensors during measurements with light-emitting diode (LED) light. Actually, we demonstrated that it does not have any impact on improving the sensing behavior, most probably due to the electronic oversaturation and scattering caused by LED excitation in porphyrins. Lastly, the most effective hybrids (1:32 ratio) were physicochemically characterized, confirming the physisorption of the macrocycles onto the SnO2 surface. In conclusion, herein, we underscore the feasibility of customizing the porphyrin chemistry and porphyrin-to-SnO2 ratio to enhance the gaseous sensing of bare metal oxides, providing valuable insights for the engineering of highly performing light-free chemiresistors.
Collapse
Affiliation(s)
- Francesca Tessore
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Giusti 9, 50121 Florence, Italy
| | - Eleonora Pargoletti
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Giusti 9, 50121 Florence, Italy
| | - Gabriele Di Carlo
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Giusti 9, 50121 Florence, Italy
| | - Cecilia Albanese
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
| | - Raffaella Soave
- National Research Council of Italy, Institute of Chemical Sciences and Technologies "Giulio Natta", Golgi 19, 20133 Milan, Italy
| | - Mario Italo Trioni
- National Research Council of Italy, Institute of Chemical Sciences and Technologies "Giulio Natta", Golgi 19, 20133 Milan, Italy
| | - Federica Marelli
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
| | - Giuseppe Cappelletti
- Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Giusti 9, 50121 Florence, Italy
| |
Collapse
|
2
|
Limosani F, Tessore F, Forni A, Lembo A, Di Carlo G, Albanese C, Bellucci S, Tagliatesta P. Nonlinear Optical Properties of Zn(II) Porphyrin, Graphene Nanoplates, and Ferrocene Hybrid Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5427. [PMID: 37570131 PMCID: PMC10419410 DOI: 10.3390/ma16155427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Following some previous work by some of us on the second order nonlinear optical (NLO) properties of Zn(II) meso-tetraphenylporphyrin (ZnP), fullerene, and ferrocene (Fc) diads and triads, in the present research, we explore the NLO response of some new hybrids with two-dimensional graphene nanoplates (GNP) instead of a zero-dimensional fullerene moiety as the acceptor unit. The experimental data, collected by Electric Field Induced Second Harmonic generation (EFISH) technique in CH2Cl2 solution with a 1907 nm incident wavelength, combined with Coupled-Perturbed (CP) and Finite Field (FF) Density Functional Theory (DFT) calculations, show a strongly enhanced contribution of the cubic electronic term γ(-2ω; ω, ω, 0), due to the extended π-conjugation of the carbonaceous acceptor moiety.
Collapse
Affiliation(s)
- Francesca Limosani
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.L.); (A.L.); (P.T.)
| | - Francesca Tessore
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy; (G.D.C.); (C.A.)
| | - Alessandra Forni
- CNR-SCITEC, Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via Golgi 19, 20133 Milan, Italy;
| | - Angelo Lembo
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.L.); (A.L.); (P.T.)
| | - Gabriele Di Carlo
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy; (G.D.C.); (C.A.)
| | - Cecilia Albanese
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy; (G.D.C.); (C.A.)
| | - Stefano Bellucci
- INFN-National Laboratories of Frascati Via Enrico Fermi 54, 00044 Frascati, Italy;
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (F.L.); (A.L.); (P.T.)
| |
Collapse
|
3
|
Basma REMOUGUI C, BRAHIMI N, MOUMENI H, NEMAMCHA A. Structural, electronic, nonlinear optical properties and spectroscopic study of noble metals doped C60 fullerene using M06-2X. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Muhammad US, Erkan S, Kaya S. Analysis of Boronic Acids Containing Amino Ferrocene by DFT Approach and In Silico Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Cheng YL, Wei L, Liu SZ, Yi XG, Chen WT, Lin WS. A novel supramolecular porphyrin-fullerene compound: Crystal structure and photophysical properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Turlakov G, Arias E, Moggio I, Rodríguez G, Ziolo RF, Rodríguez-Fernández OS, Mikhaylov A, Uudsemaa M, Cooper T, Rebane A. Photophysical and Electrochemical Properties of Push-Pull Oligo(ferrocenyl-phenyleneethynylene)s: Supramolecular Orders in Molecular Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4077-4089. [PMID: 35316062 DOI: 10.1021/acs.langmuir.2c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report on the optoelectronic properties of a series of unsymmetrical π-conjugated phenyleneethynylene macromolecules bearing ferrocene (Fc) as the electron-donor group (D), (benzyl) benzoate (Bz) or benzoic acid (Ac) as the electron attractor group (A) and connected through 2,5-di(alcoxy) phenyleneethynylene(s) (nPE) with n = 1, 2, 3 as π-conjugated bridges. In the series, by increasing the distance between the electron-attracting and electron-donor groups, the push-pull effect decreases. The intramolecular charge transfer (D → π → A) was evaluated by static and dynamic spectroscopy, electrochemistry, and density functional theory (DFT) theoretical calculations. The longest oligomer Fc3PEBz formed the best optical quality films. A study at the atomic level by scanning tunneling microscopy (STM) revealed that the molecules self-assemble on highly ordered pyrolytic graphite (HOPG) in domains with a short-range order. Films are mesoporous and the molecules arrange in a lamellar-like pattern, with an edge-on conformation with respect to HOPG, where the conjugated backbones lie parallel to the surface. Two different assemblies were identified in the monoatomic film, which depends on the ferrocene-ferrocene or benzyl-benzyl interactions.
Collapse
Affiliation(s)
- Gleb Turlakov
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna 140, Saltillo 25294, México
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna 140, Saltillo 25294, México
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna 140, Saltillo 25294, México
| | - Geraldina Rodríguez
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna 140, Saltillo 25294, México
| | - Ronald F Ziolo
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna 140, Saltillo 25294, México
| | | | - Alexander Mikhaylov
- Physics Department, Montana State University, Bozeman, Montana 59717, United States
| | - Merle Uudsemaa
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Thomas Cooper
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 3005 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Aleksander Rebane
- Physics Department, Montana State University, Bozeman, Montana 59717, United States
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
7
|
Functionalization of Gold Nanoparticles with Ru-Porphyrin and Their Selectivity in the Oligomerization of Alkynes. MATERIALS 2022; 15:ma15031207. [PMID: 35161151 PMCID: PMC8839176 DOI: 10.3390/ma15031207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles (AuNPs) were functionalized by ruthenium porphyrins through a sulfur/gold covalent bond using a three-steps reaction. The catalyst was characterized by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in order to control the binding of ruthenium porphyrin on AuNPs’ surface. The catalyst was tested and compared with an analog system not bound to AuNPs in the oligomerization reaction using 1-phenylacetylene as the substrate.
Collapse
|
8
|
Mutlu G, Okumuş A, Elmas G, Kılıç Z, Guzel R, Sabah BN, Açık L, Mergen H, Hökelek T. Phosphorus-Nitrogen Compounds. Part 65. Novel diansa-spiro-cyclotetraphosphazenes: synthesis, characterization, bioactivity and electrochemical properties, fabrication of dye-sensitized solar cell studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj03001b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this investigation, the substitution reaction of octachlorocyclotetraphosphazene, N4P4Cl8 (tetramer, OCCP, 1) with sodium 3-(N-ferrocenylmethylamino)-1-propanoxide (L1) was found to yield the compounds, 2,4-ansa- (2) and spiro- (2) cyclotetraphosphazene derivatives. The...
Collapse
|