1
|
Baaloudj O, Vu NN, Assadi AA, Le VQ, Nguyen-Tri P. Recent advances in designing and developing efficient sillenite-based materials for photocatalytic applications. Adv Colloid Interface Sci 2024; 327:103136. [PMID: 38598926 DOI: 10.1016/j.cis.2024.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Sillenite materials have been the subject of intense investigation for recent years due to their unique characteristics. They possess a distinct structure with space group I23, allowing them to exhibit distinctive features, such as an electronic structure ideal for certain applications such as photocatalysis. The present research delves into the structure, synthesis, and properties of sillenites, highlighting their suitability for photocatalysis. It explores also advanced engineering strategies for designing sillenite-based photocatalysts, including heterojunction formation, morphology modification, doping, and hybrid processes. Each strategy offers advantages and limitations that are critically discussed. The review then lists and discusses the photocatalytic performance of various sillenite-based systems recently developed for common applications, such as removing hazardous organic and inorganic contaminants, and even infrequent applications, such as microbial inactivation, H2 generation, CO2 reduction and N2 fixation. Finally, valuable insights and suggestions are put forward for future research directions in the field of sillenite-based photocatalysis. This comprehensive overview would provide a valuable resource for the development of efficient photocatalytic systems to address environmental and energy challenges.
Collapse
Affiliation(s)
- Oussama Baaloudj
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32, 16111 Algiers, Algeria
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Aymen Amin Assadi
- College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia; Univ Rennes, ENSCR-équipe Chimie et Ingénierie des Procédés, URM 6226 CNRS, ENSCR-11, Allée de Beaulieu, CS, 508307-35708 Rennes, France
| | - Van Quyet Le
- Department of Materials Science and Engineering, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.
| |
Collapse
|
2
|
Ahmed G, Rasheed A, Munawar KS, Bandaru S, Khan J, Liu Z, Ahmad MS. Visible light-driven photocatalytic bacterial inactivation on PPE, supported by the DFT and bactericidal study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27867-5. [PMID: 37273042 DOI: 10.1007/s11356-023-27867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
A novel ZnO-MoO3-ZnMoO3@graphene GZM composite catalyst prepared by microwave hydrothermal process for personal protective equipment textiles (PPE) is presented in this study. The results indicated that the GZM with defect vacancy sites of two types as observed by EPR showed significantly superior inactivation of the E. coli bacteria compared to GZM without the lower defect vacancy sites and concomitant lower electron densities. Photocatalytic activated oxidation by the GZM composites coatings was observed to proceed in acceptable times as well as the bacterial inactivation (log bact. C/Co > 107 within 3 h). Defect sites in the GZM seem to be important leading to the bacterial inactivation process. DFT calculations on the GZM with and without catalyst defect sites were carried out. The electron densities were estimated by the Fourier mapping. The results found in this study showed the potential of GZM-PPE for practical applications.
Collapse
Affiliation(s)
- Gulzar Ahmed
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Adeel Rasheed
- Department of Physics, University of Mianwali, Mianwali, 42200, Pakistan
| | | | - Satesh Bandaru
- College of Material Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Javid Khan
- College of Material Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zhongwu Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Muhammad Sheraz Ahmad
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| |
Collapse
|
3
|
Peng X, Liu S, Luo Z, Yu X, Liang W. Selective Removal of Hexavalent Chromium by Novel Nitrogen and Sulfur Containing Cellulose Composite: Role of Counter Anions. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010184. [PMID: 36614522 PMCID: PMC9821927 DOI: 10.3390/ma16010184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 05/27/2023]
Abstract
Exploiting an adsorbent with superb selectivity is of utmost importance for the remediation of Cr (VI)-laden wastewater. In this work, a novel nitrogen and sulfur functionalized 3D macroporous cellulose material (MPS) was prepared by homogeneous cross-link cellulose and polyvinylimidazole, followed by ion exchange with MoS42-. MPS exhibited high removal efficiency at a broad pH range (1.0-8.0) and large adsorption capacity (379.78 mg/g) toward Cr (VI). Particularly, outstanding selectivity with an enormous partition coefficient (1.01 × 107 mL/g) was achieved on MPS. Replacing MoS42- with Cl- and MoO42- led to a sharp decline in adsorption selectivity, demonstrating that MoS42- contributed substantially to the selectivity. Results of FTIR, XPS, and apparent kinetic analysis revealed that Cr (VI) was first pre-enriched on the MPS surface via electrostatic and dispersion forces, and then reacted with MoS42- to generate Cr (III), which deposited on MPS by forming Cr(OH)3 and chromium(III) sulfide. This study provides a new idea for designing adsorbents with a superior selectivity for removing Cr (VI) from sewage.
Collapse
Affiliation(s)
- Xiong Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shujun Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhijia Luo
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiwen Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Wanwen Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Brahimi B, Mekatel E, Kenfoud H, Berrabah SE, Trari M. Efficient removal of the antibiotic Cefixime on Mg 0.3Zn 0.7O under solar light: kinetic and mechanism studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75512-75524. [PMID: 35655019 DOI: 10.1007/s11356-022-20626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The heterogeneous photocatalysis is known to provide significant degradation and mineralization of emerging contaminants including antibiotics. For this, nanosized Mg0.3Zn0.7O (MZO) was prepared by nitrate route to be used as photocatalyst. The single-phase was confirmed by X-ray diffraction with a crystallite size of 33 nm. The morphology was visualized by scanning electron microscope/energy-dispersive X-ray analysis. The physicochemical properties were studied by the FTIR, XPS, and optical analyses. The diffuse reflectance gives a direct forbidden band of 3.26 eV. The electrochemical characterization showed an n-type semiconductor with a flat band of - 0.56 VAg/AgCl. The photodegradation of Cefixime (CFX) was carried out under solar light; the operating parameters such as the catalyst dose, solution pH, and initial CFX concentration (Co) were optimized. The best performance occurs at neutral pH ~ 6 within 4 h with an abatement of 94% for an initial CFX concentration of 5 mg/L and MZO dose of 0.75 g/L. The photodegradation follows a first-order kinetic with an apparent rate constant of 0.012 min-1. The effects of scavenging agents indicated the dominant role of hydroxyl •OH followed by the holes (h+). The results showed the potentiality of MZO as an environmentally friendly photocatalyst for CFX photodegradation.
Collapse
Affiliation(s)
- Billal Brahimi
- Laboratory of Transfer Phenomena, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32, Algiers, Algeria.
| | - Elhadj Mekatel
- Laboratory of Transfer Phenomena, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32, Algiers, Algeria
| | - Hamza Kenfoud
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, 32, Algiers, BP, Algeria
| | - Salah Eddine Berrabah
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry (L.E.C.M.C.M), Faculty of Chemistry, USTHB, BP 32, Algiers, Algeria
| | - Mohamed Trari
- Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, Algiers, Algeria
| |
Collapse
|
5
|
Cherif S, Bonnet P, Frezet L, Kane A, Assadi AA, Trari M, Yazid H, Djelal H. The photocatalytic degradation of a binary textile dyes mixture within a new configuration of loop reactor using ZnO thin film-phytotoxicity control. CR CHIM 2022. [DOI: 10.5802/crchim.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Cherif S, Djelal H, Firmin S, Bonnet P, Frezet L, Kane A, Amine Assadi A, Trari M, Yazid H. The impact of material design on the photocatalytic removal efficiency and toxicity of two textile dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66640-66658. [PMID: 35504995 DOI: 10.1007/s11356-022-20452-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
This study deals with the toxicity of the treated solutions of two types of dyes, namely, the anthraquinonic Reactive Bleu 19 dye (RB19) and the bi-azoic Direct Red 227 dye (DR227), which are treated in single and binary mixture systems. The target molecules were removed by the photocatalysis process using ZnO as a catalyst, which was calcined at two temperatures 250 and 420 °C (ZnO250 and ZnO420) prepared in the lab by the one-step calcination method. XRD, TEM, EDX, XPS, FT-IR, BET, RAMAN, and EPR analyses were carried out to characterize the catalyst material. While the phytotoxicity was being conducted using watercress seeds, the cytotoxicity took place using a cell line (raw) and an intestinal cell (caco-2). The XRD analysis showed the partial calcination of ZnO250 and the presence of anhydrous zinc acetate along with the ZnO nanoparticles (NPs). This result was not observed for ZnO420. Despite the complete discoloration (100%) of all the final solutions, ZnO250 exhibited a high cytotoxicity and phytotoxicity against the RB19 dye after the photocatalytic treatment; however, it was not the case of ZnO420 which was selected as an eco-friendly photocatalyst for the degradation of organic dyes based on the results of removal efficiency, cytotoxicity, and phytotoxicity.
Collapse
Affiliation(s)
- Sonia Cherif
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32 Al Alia, 16111, Algiers, Algeria.
- UniLaSalle-Ecole Des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, 35 170, Bruz, France.
| | - Hayet Djelal
- UniLaSalle-Ecole Des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, 35 170, Bruz, France
| | - Stephane Firmin
- UniLaSalle, Aghyle UP2018.C101, 19 rue Pierre Waguet, BP 30313 Cedex, F-60026, Beauvais, France
| | - Pierre Bonnet
- Universite Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), 24 Avenue Blaise Pascal, 63178, Aubiere, France
| | - Lawrence Frezet
- Universite Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), 24 Avenue Blaise Pascal, 63178, Aubiere, France
| | - Abdoulaye Kane
- UniLaSalle-Ecole Des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, 35 170, Bruz, France
| | - Aymen Amine Assadi
- Universite Clermont Auvergne, Institut de Chimie de Clermont-Ferrand (ICCF), 24 Avenue Blaise Pascal, 63178, Aubiere, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, 3500, Rennes, France
| | - Mohamed Trari
- Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32, El Alia, 16111, Algiers, Algeria
| | - Hynda Yazid
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32 Al Alia, 16111, Algiers, Algeria
| |
Collapse
|
7
|
Sorbent and Photocatalytic Potentials of Local Clays for the Removal of Organic Xenobiotic: Case of Crystal Violet. Catalysts 2022. [DOI: 10.3390/catal12080899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural materials are widely used in the field of environmental remediation and are appreciated for their surface physical and chemical properties. Clay constitutes a typical example. In this work, we report the evaluation of sorbent and photocatalytic potentials of local clay of two irrigated rice field waters in the degradation of crystal violet. The structural, textural and compositional properties of the local clay were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) analysis. The analysis results showed that these materials were composed mainly of quartz and kaolinite. The efficiency of these adsorbents (Y. Clay and L. Clay) to eliminate crystal violet dye from aqueous medium was examined at different initial concentrations, pH, contact time, adsorbent dose and the possible interference of inorganic salts from fertilizers. Kinetic studies showed that the adsorption process was well described by the pseudo-second order model and the equilibrium modelling results fitted adequately to the Freundlich model. The maximum amount of uptake capacity achieved at pH 2.0 was 18.40 (mg·g−1) and 20.40 (mg·g−1), respectively, for Y. Clay and L. Clay. The evaluation of the photocatalytic potential showed that the raw clay samples do not show photocatalytic activities during the 30 min of exposure to UV light. On the other hand, their photocatalytic potential is manifested when loaded with titanium dioxide (TiO2). Clays coupled with TiO2 under UV light showed an improvement in the degradation of the crystal violet dye by 15%. The synergistic effects between the high photocatalytic activity of TiO2 and the strong adsorption capacity of clays can be one promising technique for in situ remediation of contaminated soaked rice field.
Collapse
|
8
|
Advanced Photocatalytic Treatment of Wastewater Using Immobilized Titanium Dioxide as a Photocatalyst in a Pilot-Scale Reactor: Process Intensification. MATERIALS 2022; 15:ma15134547. [PMID: 35806678 PMCID: PMC9267797 DOI: 10.3390/ma15134547] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
In many nations, particularly those experiencing water scarcity, novel approaches are being applied to clean wastewater. Heterogeneous photocatalysis is the most widely used of these approaches because it entails the decomposition of organic molecules into water and carbon dioxide, which is a more ecologically benign process. In our study, we studied the photocatalytic degradation process on the effluent flumequine. This treatment is made through a solar pilot reactor in the presence of immobilized titanium dioxide with three light intensities and two types of water as solvents. A variety of factors that might influence the rate of deterioration, such as flow rate, light intensity, and initial concentration, have been investigated. The maximal degradation of flumequine was achieved at more than 90% after 2.5 h under optimal conditions (an initial concentration of 5 mg/L, three lamp light intensities, and a flow rate of 29 L/h). By combining the oxidized agent H2O2 with this process, the photocatalytic activity was improved further to 97% under the same conditions. The mineralization of this product has also been tested using total organic carbon (TOC) analysis. A high mineralization rate has been recorded at around 50% for a high initial concentration (20 mg/L) at a flow rate of 126 L/h. The results demonstrated the highly effective removal of flumequine and the efficacy of this photocatalytic system.
Collapse
|
9
|
Bismuth Sillenite Crystals as Recent Photocatalysts for Water Treatment and Energy Generation: A Critical Review. Catalysts 2022. [DOI: 10.3390/catal12050500] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Photocatalysis has been widely studied for environmental applications and water treatment as one of the advanced oxidation processes (AOPs). Among semiconductors that have been employed as catalysts in photocatalytic applications, bismuth sillenite crystals have gained a great deal of interest in recent years due to their exceptional characteristics, and to date, several sillenite material systems have been developed and their applications in photoactivity are under study. In this review paper, recent studies on the use of Bi-based sillenites for water treatment have been compiled and discussed. This review also describes the properties of Bi-based sillenite crystals and their advantages in the photocatalytic process. Various strategies used to improve photocatalytic performance are also reviewed and discussed, focusing on the specific advantages and challenges presented by sillenite-based photocatalysts. Furthermore, a critical point of certain bismuth catalysts in the literature that were found to be different from that reported and correspond to the sillenite form has also been reviewed. The effectiveness of some sillenites for environmental applications has been compared, and it has demonstrated that the activity of sillenites varies depending on the metal from which they were produced. Based on the reviewed literature, this review summarizes the current status of work with binary sillenite and provides useful insights for its future development, and it can be suggested that Bismuth sillenite crystals can be promising photocatalysts for water treatment, especially for degrading and reducing organic and inorganic contaminants. Our final review focus will emphasize the prospects and challenges of using those photocatalysts for environmental remediation and renewable energy applications.
Collapse
|
10
|
Assadi AA, Karoui S, Trabelsi K, Hajjaji A, Elfalleh W, Ghorbal A, Maghzaoui M, Assadi AA. Synthesis and Characterization of TiO 2 Nanotubes (TiO 2-NTs) with Ag Silver Nanoparticles (Ag-NPs): Photocatalytic Performance for Wastewater Treatment under Visible Light. MATERIALS 2022; 15:ma15041463. [PMID: 35208001 PMCID: PMC8880111 DOI: 10.3390/ma15041463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
In this work, we present the influence of the decoration of TiO2 nanotubes (TiO2-NTs) with Ag silver nanoparticles (Ag-NPs) on the photocatalysis of emerging pollutants such as the antibiotic diclofenac sodium. The Ag-NPs were loaded onto the TiO2-NTs by the anodization of metallic titanium foils. Diclofenac sodium is an emerging pollutant target of the pharmaceutical industry because of its negative environmental impact (high toxicity and confirmed carcinogenicity). The obtained Ag-NP/TiO2-NT nanocomposites were characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), transmission spectroscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In order to study the photocatalytic behavior of Ag-NPs/TiO2-NTs with visible cold LEDs, the possible photocatalytic mechanism of antibiotic degradation with reactive species (O2°− and OH°) was detailed. Moreover, the Langmuir–Hinshelwood model was used to correlate the experimental results with the optimized catalyst. Likewise, reuse tests showed the chemical stability of the catalyst.
Collapse
Affiliation(s)
- Achraf Amir Assadi
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6072, Tunisia; (S.K.); (A.G.)
- Industries Chimiques du Fluor—Gabes Plant, 06 Rue Amine El Abbassi, Tunis 1002, Tunisia;
- Industrial Zone Gabes Port, Gabes 6071, Tunisia
- Correspondence: (A.A.A.); (A.A.A.); Tel.: +216-54-013-728 (A.A.A.); +33-22-32-38-152 (A.A.A.)
| | - Sarra Karoui
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6072, Tunisia; (S.K.); (A.G.)
| | - Khaled Trabelsi
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, Hammam-Lif 2050, Tunisia; (K.T.); (A.H.)
| | - Anouar Hajjaji
- Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, Hammam-Lif 2050, Tunisia; (K.T.); (A.H.)
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, Gabes 6072, Tunisia;
| | - Achraf Ghorbal
- Research Unit Advanced Materials, Applied Mechanics, Innovative Processes and Environment, Higher Institute of Applied Sciences and Technology of Gabes (ISSAT), University of Gabes, Gabes 6072, Tunisia; (S.K.); (A.G.)
| | - Mounir Maghzaoui
- Industries Chimiques du Fluor—Gabes Plant, 06 Rue Amine El Abbassi, Tunis 1002, Tunisia;
- Industrial Zone Gabes Port, Gabes 6071, Tunisia
| | - Aymen Amin Assadi
- École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226, Universite de Rennes, F-35000 Rennes, France
- Correspondence: (A.A.A.); (A.A.A.); Tel.: +216-54-013-728 (A.A.A.); +33-22-32-38-152 (A.A.A.)
| |
Collapse
|
11
|
A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts 2021. [DOI: 10.3390/catal11121498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obtaining clean and high-quality water free of pathogenic microorganisms is a worldwide challenge. Various techniques have been investigated for achieving an effective removal or inactivation of these pathogenic microorganisms. One of those promising techniques is photocatalysis. In recent years, photocatalytic processes used semiconductors as photocatalysts. They were widely studied as a green and safe technology for water disinfection due to their high efficiency, being non-toxic and inexpensive, and their ability to disinfect a wide range of microorganisms under UV or visible light. In this review, we summarized the inactivation mechanisms of different waterborne pathogenic microorganisms by semiconductor photocatalysts. However, the photocatalytic efficiency of semiconductors photocatalysts, especially titanium dioxide, under visible light is limited and hence needs further improvements. Several strategies have been studied to improve their efficiencies which are briefly discussed in this review. With the developing of nanotechnology, doping with nanomaterials can increase and promote the semiconductor’s photocatalytic efficiency, which can enhance the deactivation or damage of a large number of waterborne pathogenic microorganisms. Here, we present an overview of antimicrobial effects for a wide range of nano-photocatalysts, including titanium dioxide-based, other metal-containing, and metal-free photocatalysts. Promising future directions and challenges for materials research in photocatalytic water disinfection are also concluded in this review.
Collapse
|