1
|
Hakami IA. An Outline on the Advancements in Surgical Management of Osteoporosis-Associated Fractures. Cureus 2024; 16:e63226. [PMID: 39070522 PMCID: PMC11280975 DOI: 10.7759/cureus.63226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Osteoporosis significantly impairs bone density and increases fracture risk, representing a substantial global health challenge. The effectiveness of traditional treatments such as calcium supplementation and exercise in completely preventing fractures is limited. This review explores recent advancements in surgical techniques and treatment modalities to manage osteoporotic fractures better and improve patient outcomes. Osteoporotic fractures demand specialized surgical techniques due to compromised bone quality. Vertebroplasty and kyphoplasty are minimally invasive procedures that provide rapid pain relief and structural support using bone cement. While vertebroplasty is effective, it carries risks of cement leakage and new fractures. Kyphoplasty, with added balloon inflation, reduces leakage risk and improves vertebral height restoration but is costlier. Cement-augmented screws enhance fixation but can increase adjacent fracture risk and pose long-term complications. Surgical advancements encompass robotic-assisted surgery, offering precision and accelerated recovery, alongside biologic agents like bone morphogenetic proteins (BMPs), which enhance bone healing while reducing secondary interventions and eliminating donor site morbidity. Bone graft substitutes such as calcium phosphate cements enhance biomechanical compatibility, decrease morbidity, and reduce fracture loss and pain. Balloon kyphoplasty aids in height restoration and pain relief and diminishes the risk of subsequent vertebral fractures. Bioglass scaffolds promote bone regeneration by improving bone mineral density and lowering the incidence of new fractures. Optimal perioperative care, including patient selection, nutritional management, and early mobilization strategies, is crucial for mitigating risks in vulnerable populations. While current surgical interventions provide significant pain relief and functional benefits, ongoing research and multidisciplinary collaboration are crucial to prospectively refine these techniques and reduce the burden of osteoporosis. New technologies, such as tissue engineering and gene editing, hold potential for future treatment paradigms.
Collapse
Affiliation(s)
- Ibrahim A Hakami
- Department of Orthopedic Surgery, College of Medicine, Shaqra University, Dawadmi, SAU
| |
Collapse
|
2
|
Lacan I, Moldovan M, Sarosi C, Cuc S, Pastrav M, Petean I, Ene R. Mechanical Properties and Liquid Absorption of Calcium Phosphate Composite Cements. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5653. [PMID: 37629944 PMCID: PMC10456573 DOI: 10.3390/ma16165653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Calcium phosphate cements present increased biocompatibility due to their chemical composition being similar to that of the hydroxyapatite in the hard tissues of the living body. It has certain limitations due to its poor mechanical properties, such as low tensile strength and increased brittleness. Thus, the optimal way to improve properties is through the design of novel composite cements. The purpose was fulfilled using a 25% hydroxyethyl methacrylate (HEMA) mixed with 3% urethane dimethacrzlate (UDMA) base matrix with various ratios of polyethylene glycol (PEG 400) and polycaprolactone (PCL). Mineral filler is based on tricalcium phosphate (TCP) with different chitosan ratio used as bio-response enhancer additive. Four mixtures were prepared: S0-unfilled polymer matrix; S1 with 50% TCP filler; S2 with 50% chitosan + TCP filler; and S3 with 17.5% chitosan + TCP mixed with 17.5% nano hydroxyapatite (HA). The mechanical properties testing revealed that the best compressive strength was obtained by S2, followed by S3, and the worst value was obtained for the unfilled matrix. The same tendency was observed for tensile and flexural strength. These results show that the novel filler system increases the mechanical resistance of the TCP composite cements. Liquid exposure investigation reveals a relative constant solubility of the used filler systems during 21 days of exposure: the most soluble fillers being S3 and S2 revealing that the additivated TCP is more soluble than without additives ones. Thus, the filler embedding mode into the polymer matrix plays a key role in the liquid absorption. It was observed that additive filler enhances the hydrophobicity of UDMA monomer, with the matrix resulting in the lowest liquid absorption values, while the non-additivated samples are more absorbent due to the prevalence of hydrolytic aliphatic groups within PEG 400. The higher liquid absorption was obtained on the first day of immersion, and it progressively decreased with exposure time due to the relative swelling of the surface microstructural features. The obtained results are confirmed by the microstructural changes monitored by SEM microscopy. S3 and S2 present a very uniform and compact filler distribution, while S1 presents local clustering of the TCP powder at the contact with the polymer matrix. The liquid exposure revealed significant pore formation in S0 and S1 samples, while S3 and S2 proved to be more resistant against superficial erosion, proving the best resistance against liquid penetration.
Collapse
Affiliation(s)
- Ioana Lacan
- Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
| | - Marioara Moldovan
- Department of Polymer Composites, Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Codruta Sarosi
- Department of Polymer Composites, Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Stanca Cuc
- Department of Polymer Composites, Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania; (M.M.); (C.S.)
| | - Mihaela Pastrav
- Department of Orthodontics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 31 Avram Iancu Street, 400117 Cluj-Napoca, Romania
| | - Ioan Petean
- Faculty of Chemistry and Chemical Engineering, University Babes-Bolyai, 11 Arany János Street, 400028 Cluj-Napoca, Romania;
| | - Razvan Ene
- 14 Department, Orthopedics, Anesthesia and Intensive Care, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
- Orthopedics and Traumatology Department, Bucharest Emergency University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
3
|
Fuchs A, Bartolf-Kopp M, Böhm H, Straub A, Kübler AC, Linz C, Gbureck U. Composite grafts made of polycaprolactone fiber mats and oil-based calcium phosphate cement pastes for the reconstruction of cranial and maxillofacial defects. Clin Oral Investig 2023; 27:3199-3209. [PMID: 36864278 PMCID: PMC10264493 DOI: 10.1007/s00784-023-04932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
OBJECTIVES Synthetic bone substitutes which can be adapted preoperatively and patient specific may be helpful in various bony defects in the field of oral- and maxillofacial surgery. For this purpose, composite grafts made of self-setting and oil-based calcium phosphate cement (CPC) pastes, which were reinforced with 3D-printed polycaprolactone (PCL) fiber mats were manufactured. MATERIALS AND METHODS Bone defect models were acquired using patient data from real defect situations of patients from our clinic. Using a mirror imaging technique, templates of the defect situation were fabricated via a commercially available 3D-printing system. The composite grafts were assembled layer by layer, aligned on top of these templates and fitted into the defect situation. Besides, PCL-reinforced CPC samples were evaluated regarding their structural and mechanical properties via X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), and 3-point-bending testing. RESULTS The process sequence including data acquisition, template fabrication, and manufacturing of patient specific implants proved to be accurate and uncomplicated. The individual implants consisting mainly of hydroxyapatite and tetracalcium phosphate displayed good processability and a high precision of fit. The mechanical properties of the CPC cements in terms of maximum force and stress load to material fatigue were not negatively affected by the PCL fiber reinforcement, whereas clinical handling properties increased remarkably. CONCLUSION PCL fiber reinforcement of CPC cements enables the production of very freely modelable three-dimensional implants with adequate chemical and mechanical properties for bone replacement applications. CLINICAL RELEVANCE The complex bone morphology in the region of the facial skull often poses a great challenge for a sufficient reconstruction of bony defects. A full-fledged bone replacement here often requires the replication of filigree three-dimensional structures partly without support from the surrounding tissue. With regard to this problem, the combination of smooth 3D-printed fiber mats and oil-based CPC pastes represents a promising method for fabricating patient specific degradable implants for the treatment of various craniofacial bone defects.
Collapse
Affiliation(s)
- Andreas Fuchs
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
| | - Michael Bartolf-Kopp
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Hartmut Böhm
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Anton Straub
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Christian Linz
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
- Department of Oral and Maxillofacial Plastic Surgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| |
Collapse
|
4
|
Rothweiler R, Kuhn S, Stark T, Heinemann S, Hoess A, Fuessinger MA, Brandenburg LS, Roelz R, Metzger MC, Hubbe U. Development of a new critical size defect model in the paranasal sinus and first approach for defect reconstruction-An in vivo maxillary bone defect study in sheep. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:76. [PMID: 36264396 PMCID: PMC9584845 DOI: 10.1007/s10856-022-06698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Fractures of the paranasal sinuses often require surgical intervention. Persisting bone defects lead to permanent visible deformities of the facial contours. Bone substitutes for reconstruction of defects with simultaneous induction of new bone formation are not commercially available for the paranasal sinus. New materials are urgently needed and have to be tested in their future area of application. For this purpose critical size defect models for the paranasal sinus have to be developed. A ≥2.4 cm large bilateral circular defect was created in the anterior wall of the maxillary sinus in six sheep via an extraoral approach. The defect was filled with two types of an osteoconductive titanium scaffold (empty scaffold vs. scaffold filled with a calcium phosphate bone cement paste) or covered with a titanium mesh either. Sheep were euthanized after four months. All animals performed well, no postoperative complications occured. Meshes and scaffolds were safely covered with soft tissue at the end of the study. The initial defect size of ≥2.4 cm only shrunk minimally during the investigation period confirming a critical size defect. No ingrowth of bone into any of the scaffolds was observed. The anterior wall of the maxillary sinus is a region with low complication rate for performing critical size defect experiments in sheep. We recommend this region for experiments with future scaffold materials whose intended use is not only limited to the paranasal sinus, as the defect is challenging even for bone graft substitutes with proven osteoconductivity. Graphical abstract.
Collapse
Affiliation(s)
- R Rothweiler
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| | - S Kuhn
- Stryker Leibinger GmbH & Co. KG, Bötzinger Straße 41, 79111, Freiburg, Germany
| | - T Stark
- Stryker Leibinger GmbH & Co. KG, Bötzinger Straße 41, 79111, Freiburg, Germany
| | - S Heinemann
- INNOTERE GmbH, Meissner Str. 191, 01445, Radebeul, Germany
| | - A Hoess
- INNOTERE GmbH, Meissner Str. 191, 01445, Radebeul, Germany
| | - M A Fuessinger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - L S Brandenburg
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - R Roelz
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - M C Metzger
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - U Hubbe
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
5
|
Stoetzel S, Malhan D, Wild U, Helbing C, Hassan F, Attia S, Jandt KD, Heiss C, El Khassawna T. Osteocytes Influence on Bone Matrix Integrity Affects Biomechanical Competence at Bone-Implant Interface of Bioactive-Coated Titanium Implants in Rat Tibiae. Int J Mol Sci 2021; 23:374. [PMID: 35008800 PMCID: PMC8745552 DOI: 10.3390/ijms23010374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Osseointegration is a prerequisite for the long-term success of implants. Titanium implants are preferred for their biocompatibility and mechanical properties. Nonetheless, the need for early and immediate loading requires enhancing these properties by adding bioactive coatings. In this preclinical study, extracellular matrix properties and cellular balance at the implant/bone interface was examined. Polyelectrolyte multilayers of chitosan and gelatin or with chitosan and Hyaluronic acid fabricated on titanium alloy using a layer-by-layer self-assembly process were compared with native titanium alloy. The study aimed to histologically evaluate bone parameters that correlate to the biomechanical anchorage enhancement resulted from bioactive coatings of titanium implants in a rat animal model. Superior collagen fiber arrangements and an increased number of active osteocytes reflected a significant improvement of bone matrix quality at the bone interface of the chitosan/gelatin-coated titan implants over chitosan/hyaluronic acid-coated and native implants. Furthermore, the numbers and localization of osteoblasts and osteoclasts in the reparative and remodeling phases suggested a better cellular balance in the chitosan/Gel-coated group over the other two groups. Investigating the micro-mechanical properties of bone tissue at the interface can elucidate detailed discrepancies between different promising bioactive coatings of titanium alloys to maximize their benefit in future medical applications.
Collapse
Affiliation(s)
- Sabine Stoetzel
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| | - Deeksha Malhan
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| | - Ute Wild
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| | - Christian Helbing
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; (C.H.); (K.D.J.)
| | - Fathi Hassan
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| | - Sameh Attia
- Department of Oral and Maxillofacial Surgery, Justus-Liebig University of Giessen, Klinikstrasse 33, 35392 Giessen, Germany;
| | - Klaus D. Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany; (C.H.); (K.D.J.)
| | - Christian Heiss
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
- Department of Trauma, Hand and Reconstructive Surgery, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392 Giessen, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University, Aulweg 128, 35392 Giessen, Germany; (S.S.); (D.M.); (U.W.); (F.H.); (C.H.)
| |
Collapse
|