1
|
Akıcı ŞY, Bankoğlu Yola B, Karslıoğlu B, Polat İ, Atar N, Yola ML. Fenpicoxamid-Imprinted Surface Plasmon Resonance (SPR) Sensor Based on Sulfur-Doped Graphitic Carbon Nitride and Its Application to Rice Samples. MICROMACHINES 2023; 15:6. [PMID: 38276834 PMCID: PMC10820838 DOI: 10.3390/mi15010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
This research attempt involved the development and utilization of a newly designed surface plasmon resonance (SPR) sensor which incorporated sulfur-doped graphitic carbon nitride (S-g-C3N4) as the molecular imprinting material. The primary objective was to employ this sensor for the quantitative analysis of Fenpicoxamid (FEN) in rice samples. The synthesis of S-g-C3N4 with excellent purity was achieved using the thermal poly-condensation approach, which adheres to the principles of green chemistry. Afterwards, UV polymerization was utilized to fabricate a surface plasmon resonance (SPR) chip imprinted with FEN, employing S-g-C3N4 as the substrate material. This process involved the inclusion of N,N'-azobisisobutyronitrile (AIBN) as the initiator, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, methacryloylamidoglutamic acid (MAGA) as the monomer, and FEN as the analyte. After successful structural analysis investigations on a surface plasmon resonance (SPR) chip utilizing S-g-C3N4, which was imprinted with FEN, a comprehensive investigation was conducted using spectroscopic, microscopic, and electrochemical techniques. Subsequently, the kinetic analysis applications, namely the determination of the limit of quantification (LOQ) and the limit of detection (LOD), were carried out. For analytical results, the linearity of the FEN-imprinted SPR chip based on S-g-C3N4 was determined as 1.0-10.0 ng L-1 FEN, and LOQ and LOD values were obtained as 1.0 ng L-1 and 0.30 ng L-1, respectively. Finally, the prepared SPR sensor's high selectivity, repeatability, reproducibility, and stability will ensure safe food consumption worldwide.
Collapse
Affiliation(s)
- Şule Yıldırım Akıcı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey; (Ş.Y.A.); (İ.P.)
| | - Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep 27000, Turkey;
| | - Betül Karslıoğlu
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Hasan Kalyoncu University, Gaziantep 27000, Turkey;
| | - İlknur Polat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey; (Ş.Y.A.); (İ.P.)
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli 20160, Turkey;
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey; (Ş.Y.A.); (İ.P.)
| |
Collapse
|
2
|
Kim M, Ahn HJ, Silalahi VC, Heo D, Adhikari S, Jang Y, Lee J, Lee D. Dual-Dewetting Process for Self-Assembled Nanoparticle Clusters in Wafer Scale. Int J Mol Sci 2023; 24:13102. [PMID: 37685909 PMCID: PMC10488070 DOI: 10.3390/ijms241713102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Plasmonic molecules, which are geometrically well-defined plasmonic metal nanoparticle clusters, have attracted significant attention due to their enhancement of light-matter interactions owing to a stronger electric field enhancement than that by single particles. High-resolution lithography techniques provide precise positioning of plasmonic nanoparticles, but their fabrication costs are excessively high. In this study, we propose a lithography-free, self-assembly fabrication method, termed the dual-dewetting process, which allows the control of the size and density of gold nanoparticles. This process involves depositing a gold thin film on a substrate and inducing dewetting through thermal annealing, followed by a second deposition and annealing. The method achieves a uniform distribution of particle size and density, along with increased particle density, across a 6-inch wafer. The superiority of the method is confirmed by a 30-fold increase in the signal intensity of surface-enhanced Raman scattering following the additional dewetting with an 8 nm film, compared to single dewetting alone. Our findings indicate that the dual-dewetting method provides a simple and efficient approach to enable a variety of plasmonic applications through efficient plasmonic molecule large-area fabrication.
Collapse
Affiliation(s)
- Minjun Kim
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun-Ju Ahn
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Damun Heo
- School of Semiconductor Display Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Samir Adhikari
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yudong Jang
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongmin Lee
- School of Semiconductor Display Technology, Hallym University, Chuncheon 24252, Republic of Korea
- Nano Convergence Technology Center, Hallym University, Chuncheon 24252, Republic of Korea
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Nguyen TM, Choi CW, Lee JE, Heo D, Lee YW, Gu SH, Choi EJ, Lee JM, Devaraj V, Oh JW. Understanding the Role of M13 Bacteriophage Thin Films on a Metallic Nanostructure through a Standard and Dynamic Model. SENSORS (BASEL, SWITZERLAND) 2023; 23:6011. [PMID: 37447860 DOI: 10.3390/s23136011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The dynamic and surface manipulation of the M13 bacteriophage via the meeting application demands the creation of a pathway to design efficient applications with high selectivity and responsivity rates. Here, we report the role of the M13 bacteriophage thin film layer that is deposited on an optical nanostructure involving gold nanoparticles/SiO2/Si, as well as its influence on optical and geometrical properties. The thickness of the M13 bacteriophage layer was controlled by varying either the concentration or humidity exposure levels, and optical studies were conducted. We designed a standard and dynamic model based upon three-dimensional finite-difference time-domain (3D FDTD) simulations that distinguished the respective necessity of each model under variable conditions. As seen in the experiments, the origin of respective peak wavelength positions was addressed in detail with the help of simulations. The importance of the dynamic model was noted when humidity-based experiments were conducted. Upon introducing varied humidity levels, the dynamic model predicted changes in plasmonic properties as a function of changes in NP positioning, gap size, and effective index (this approach agreed with the experiments and simulated results). We believe that this work will provide fundamental insight into understanding and interpreting the geometrical and optical properties of the nanostructures that involve the M13 bacteriophage. By combining such significant plasmonic properties with the numerous benefits of M13 bacteriophage (like low-cost fabrication, multi-wavelength optical characteristics devised from a single structure, reproducibility, reversible characteristics, and surface modification to suit application requirements), it is possible to develop highly efficient integrated plasmonic biomaterial-based sensor nanostructures.
Collapse
Affiliation(s)
- Thanh Mien Nguyen
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Cheol Woong Choi
- Department of Internal Medicine, Medical Research Institute and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si 50612, Republic of Korea
- School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ji-Eun Lee
- School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Ophthalmology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Damun Heo
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ye-Won Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sun-Hwa Gu
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Eun Jeong Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
- Center of Nano Convergence Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Vasanthan Devaraj
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan 46214, Republic of Korea
| |
Collapse
|
4
|
Bhaskar S. Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission. MICROMACHINES 2023; 14:mi14030574. [PMID: 36984981 PMCID: PMC10054051 DOI: 10.3390/mi14030574] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 05/14/2023]
Abstract
In the past decade, novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Recently, metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). While the process parameters and conditions to realize optimum coupling efficiency between the radiating dipoles and the plasmon polaritons in SPCE framework have been extensively discussed, the utility of disruptive nano-engineering over the SPCE platform and analogous interfaces such as 'ferroplasmon-on-mirror (FPoM)' as well as an alternative technology termed 'photonic crystal-coupled emission (PCCE)' have been seldom reviewed. In light of these observations, in this focus review, the myriad nano-engineering protocols developed over the SPCE, FPoM and PCCE platform are succinctly captured, presenting an emphasis on the recently developed cryosoret nano-assembly technology for photo-plasmonic hotspot generation (first to fourth). These technologies and associated sensing platforms are expected to ameliorate the current biosensing modalities with better understanding of the biophysicochemical processes and related outcomes at advanced micro-nano-interfaces. This review is hence envisaged to present a broad overview of the latest developments in SPCE substrate design and development for interdisciplinary applications that are of relevance in environmental as well as biological heath monitoring.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Kim WG, Devaraj V, Yang Y, Lee JM, Kim JT, Oh JW, Rho J. Three-dimensional plasmonic nanoclusters driven by co-assembly of thermo-plasmonic nanoparticles and colloidal quantum dots. NANOSCALE 2022; 14:16450-16457. [PMID: 36214195 DOI: 10.1039/d2nr03737h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metallic nanoparticles that support localized surface plasmons have emerged as fundamental iconic building blocks for nanoscale photonics. Self-assembled clustering of plasmonic nanoparticles with controlled near-field interactions offers an interesting novel route to manipulate the electromagnetic fields at a subwavelength scale. Various bottom-up, self-assembly manners have been successfully devised to build plasmonic nanoparticle clusters displaying attractive optical properties. However, the incapability to configure on-demand architectures limits its practical reliability uses for scalable nanophotonic devices. Furthermore, a critical challenge has been addressing the accurate positioning of functional nanoparticles, including catalytic nanoparticles, dielectric nanoparticles, and quantum dots (QDs) in the clustered plasmonic hotspots. This work proposes a micropipette-based self-assembly method to fabricate three-dimensional architectures composed of colloidal clusters. The heterogeneous colloidal clusters comprising metallic nanoparticles and QDs are fabricated in one step by the micropipette-based self-assembly method. A plasmonic clustered pillar embedding QDs exhibited excellent photoluminescence characteristics compared to a collapsed pillar. The experimental and theoretical demonstration of the localized surface plasmon resonance and thermo-plasmonic properties of the colloidal clusters was performed.
Collapse
Affiliation(s)
- Won-Geun Kim
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Vasanthan Devaraj
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea.
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Jong-Min Lee
- Center of Nano Convergence Technology and School of Nanoconvergence Technology, Hallym University, Chuncheon 24252, Korea
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China.
| | - Jin-Woo Oh
- BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea.
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
6
|
Akinyemi L, Oladejo S, Ekwe S, Imoize AL, Ojo SA. Effects of Damping Constant of Electron and Size on Quantum-Based Frequency-dependent Dielectric Function of Small Metallic Plasmonic Devices. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|