1
|
Wakjira Y, Kurukkal NS, Lemu HG. Reverse engineering in medical application: literature review, proof of concept and future perspectives. Sci Rep 2024; 14:23621. [PMID: 39384808 PMCID: PMC11464897 DOI: 10.1038/s41598-024-74176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/24/2024] [Indexed: 10/11/2024] Open
Abstract
Reverse engineering, a process of extracting information or knowledge from existing objects or systems, has gained significant attention in various fields, including medicine. This article presents a comprehensive literature review and a proof of concept on the application of reverse engineering in the medical field. The review particularly focuses on the reverse engineering process, available technologies, and their specific relevance to the medical domain. Various imaging techniques, such as computed tomography and magnetic resonance imaging, are discussed in respect of their integration with reverse engineering methodologies. Furthermore, the article explores the wide range of medical applications facilitated by reverse engineering, including prosthetics, implants, tissue engineering, and surgical planning. The potential of reverse engineering to enhance personalized medicine and patient-specific treatments is highlighted. A detailed proof of concept focusing on femur reconstruction is a significant component of the article. The proof of concept showcases the practical implementation of reverse engineering techniques to assist in designing and manufacturing precise custom-made implants and bone reconstruction. It emphasizes the integration of patient-specific anatomical data obtained through imaging technologies and the subsequent utilization of reverse engineering processes for anatomical reconstruction (solid modeling). Overall, this article provides an extensive overview of reverse engineering in medical applications, incorporating a literature review and a case study. The findings highlight reverse engineering's potential to advance medical practices, improve patient outcomes, and foster personalized treatments. The review emphasizes the reverse engineering process, available technologies, and their specific relevance to the medical field, as well as their potential and effectiveness in advancing medical practices.
Collapse
Affiliation(s)
- Yosef Wakjira
- Faculty of Science and Technology, Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, Kjell Arholms Gate 41, 4021, Stavanger, Norway.
| | - Navaneethan S Kurukkal
- Faculty of Science and Technology, Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, Kjell Arholms Gate 41, 4021, Stavanger, Norway
| | - Hirpa G Lemu
- Faculty of Science and Technology, Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, Kjell Arholms Gate 41, 4021, Stavanger, Norway
| |
Collapse
|
2
|
Manescu (Paltanea) V, Antoniac I, Antoniac A, Laptoiu D, Paltanea G, Ciocoiu R, Nemoianu IV, Gruionu LG, Dura H. Bone Regeneration Induced by Patient-Adapted Mg Alloy-Based Scaffolds for Bone Defects: Present and Future Perspectives. Biomimetics (Basel) 2023; 8:618. [PMID: 38132557 PMCID: PMC10742271 DOI: 10.3390/biomimetics8080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Treatment of bone defects resulting after tumor surgeries, accidents, or non-unions is an actual problem linked to morbidity and the necessity of a second surgery and often requires a critical healthcare cost. Although the surgical technique has changed in a modern way, the treatment outcome is still influenced by patient age, localization of the bone defect, associated comorbidities, the surgeon approach, and systemic disorders. Three-dimensional magnesium-based scaffolds are considered an important step because they can have precise bone defect geometry, high porosity grade, anatomical pore shape, and mechanical properties close to the human bone. In addition, magnesium has been proven in in vitro and in vivo studies to influence bone regeneration and new blood vessel formation positively. In this review paper, we describe the magnesium alloy's effect on bone regenerative processes, starting with a short description of magnesium's role in the bone healing process, host immune response modulation, and finishing with the primary biological mechanism of magnesium ions in angiogenesis and osteogenesis by presenting a detailed analysis based on a literature review. A strategy that must be followed when a patient-adapted scaffold dedicated to bone tissue engineering is proposed and the main fabrication technologies are combined, in some cases with artificial intelligence for Mg alloy scaffolds, are presented with examples. We emphasized the microstructure, mechanical properties, corrosion behavior, and biocompatibility of each study and made a basis for the researchers who want to start to apply the regenerative potential of magnesium-based scaffolds in clinical practice. Challenges, future directions, and special potential clinical applications such as osteosarcoma and persistent infection treatment are present at the end of our review paper.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.A.); (R.C.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (G.P.); (I.V.N.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.A.); (R.C.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.A.); (R.C.)
| | - Dan Laptoiu
- Department of Orthopedics and Trauma I, Colentina Clinical Hospital, 19-21 Soseaua Stefan cel Mare, RO-020125 Bucharest, Romania;
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (G.P.); (I.V.N.)
| | - Robert Ciocoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (A.A.); (R.C.)
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (G.P.); (I.V.N.)
| | - Lucian Gheorghe Gruionu
- Faculty of Mechanics, University of Craiova, 13 Alexandru Ioan Cuza, RO-200585 Craiova, Romania;
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, RO-550169 Sibiu, Romania;
| |
Collapse
|
3
|
Gutmann F, Hoschke K, Ganzenmüller G, Hiermaier S. Functionality and Mechanical Performance of Miniaturized Non-Assembly Pin-Joints Fabricated in Ti6Al4V by Laser Powder Bed Fusion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6992. [PMID: 37959589 PMCID: PMC10648167 DOI: 10.3390/ma16216992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
In this work, additively manufactured pin-joint specimens are analyzed for their mechanical performance and functionality. The functionality of a pin-joint is its ability to freely rotate. The specimens were produced using laser powder bed fusion technology with the titanium alloy Ti6Al4V. The pin-joints were manufactured using previously optimized process parameters to successfully print miniaturized joints with an angle to the build plate. The focus of this work lies in the influence of joint clearance, and therefore all specimens were manufactured with a variety of clearance values, from 0 µm up to 150 µm, in 10 µm steps. The functionality and performance were analyzed using torsion testing and tensile testing. Furthermore, a metallographic section was conducted to visually inspect the clearances of the additively manufactured pin-joints with different joint clearance values. The results of the torsion and tensile tests complement each other and emphasize a correlation between the joint clearance and the maximal particle size of the powder utilized for manufacturing and the mechanical behavior and functionality of the pin-joints. Non-assembly multibody pin-joints with good functionality were obtained reliably using a joint clearance of 90 µm or higher. Our findings show how and with which properties miniaturized pin-joints that can be integrated into lattice structures can be successfully manufactured on standard laser powder bed fusion machines. The results also indicate the potential and limitations of further miniaturization.
Collapse
Affiliation(s)
- Florian Gutmann
- Department of Sustainable Systems Engineering—INATECH, Albert-Ludwigs-University Freiburg, Emmy-Noether-Straße 2, 79110 Freiburg, Germany
- Fraunhofer Institute for High-Speed Dynamics (EMI), Ernst-Zermelo-Str. 4, 79104 Freiburg, Germany;
| | - Klaus Hoschke
- Fraunhofer Institute for High-Speed Dynamics (EMI), Ernst-Zermelo-Str. 4, 79104 Freiburg, Germany;
| | - Georg Ganzenmüller
- Department of Sustainable Systems Engineering—INATECH, Albert-Ludwigs-University Freiburg, Emmy-Noether-Straße 2, 79110 Freiburg, Germany
| | - Stefan Hiermaier
- Department of Sustainable Systems Engineering—INATECH, Albert-Ludwigs-University Freiburg, Emmy-Noether-Straße 2, 79110 Freiburg, Germany
- Fraunhofer Institute for High-Speed Dynamics (EMI), Ernst-Zermelo-Str. 4, 79104 Freiburg, Germany;
| |
Collapse
|
4
|
Mendoza-Cerezo L, Rodríguez-Rego JM, Soriano-Carrera A, Marcos-Romero AC, Macías-García A. Fabrication and characterisation of bioglass and hydroxyapatite-filled scaffolds. J Mech Behav Biomed Mater 2023; 144:105937. [PMID: 37307642 DOI: 10.1016/j.jmbbm.2023.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Tissue engineering is a continuously evolving field. One of the main lines of research in this field focuses on the replacement of bone defects with materials designed to interact with the cells of a living organism in order to provide the body with a structure on which new tissues can easily grow. Among the most commonly used materials are bioglasses, which are frequently used due to their versatility and good properties. This article discusses the results of the production of an injectable paste of Bioglass® 45S5 and hydroxyapatite on a 3D printed porous structure by additive manufacturing, using a thermoplastic (PLA). The results were evaluated in a specific application of the paste, so the mechanical and bioactive properties were studied to show the multiple possibilities of using this combination for its application in regenerative medicine and more specifically in bone implants.
Collapse
Affiliation(s)
- Laura Mendoza-Cerezo
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| | - Jesús M Rodríguez-Rego
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España.
| | - Anabel Soriano-Carrera
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| | - Alfonso C Marcos-Romero
- Departamento de Expresión Gráfica, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| | - Antonio Macías-García
- Departamento de Ingeniería Mecánica, Energética y de Materiales, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Extremadura, Avenida de Elvas, s/n, 06006, Badajoz, España
| |
Collapse
|
5
|
Ryltseva GA, Dudaev AE, Menzyanova NG, Volova TG, Alexandrushkina NA, Efimenko AY, Shishatskaya EI. Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells. J Funct Biomater 2023; 14:jfb14020085. [PMID: 36826884 PMCID: PMC9959859 DOI: 10.3390/jfb14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The needs of modern regenerative medicine for biodegradable polymers are wide and varied. Restoration of the viability of the vascular tree is one of the most important components of the preservation of the usefulness of organs and tissues. The creation of vascular implants compatible with blood is an important task of vascular bioengineering. The function of the endothelial layer of the vessel, being largely responsible for the development of thrombotic complications, is of great importance for hemocompatibility. The development of surfaces with specific characteristics of biomaterials that are used in vascular technologies is one of the solutions for their correct endothelialization. Linear polyhydroxyalkanoates (PHAs) are biodegradable structural polymeric materials suitable for obtaining various types of implants and tissue engineering, having a wide range of structural and physicomechanical properties. The use of PHA of various monomeric compositions in endothelial cultivation makes it possible to evaluate the influence of material properties, especially surface characteristics, on the functional state of cells. It has been established that PHA samples with the inclusion of 3-hydroxyhexanoate have optimal characteristics for the formation of a human umbilical vein endothelial cell, HUVEC, monolayer in terms of cell morphology as well as the levels of expression of vinculin and VE-cadherin. The obtained results provide a rationale for the use of PHA copolymers as materials for direct contact with the endothelium in vascular implants.
Collapse
Affiliation(s)
- Galina A. Ryltseva
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Natalia G. Menzyanova
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia A. Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anastasia Yu. Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| |
Collapse
|
6
|
Height-to-Diameter Ratio and Porosity Strongly Influence Bulk Compressive Mechanical Properties of 3D-Printed Polymer Scaffolds. Polymers (Basel) 2022; 14:polym14225017. [PMID: 36433144 PMCID: PMC9693008 DOI: 10.3390/polym14225017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Although the architectural design parameters of 3D-printed polymer-based scaffolds-porosity, height-to-diameter (H/D) ratio and pore size-are significant determinants of their mechanical integrity, their impact has not been explicitly discussed when reporting bulk mechanical properties. Controlled architectures were designed by systematically varying porosity (30-75%, H/D ratio (0.5-2.0) and pore size (0.25-1.0 mm) and fabricated using fused filament fabrication technique. The influence of the three parameters on compressive mechanical properties-apparent elastic modulus Eapp, bulk yield stress σy and yield strain εy-were investigated through a multiple linear regression analysis. H/D ratio and porosity exhibited strong influence on the mechanical behavior, resulting in variations in mean Eapp of 60% and 95%, respectively. σy was comparatively less sensitive to H/D ratio over the range investigated in this study, with 15% variation in mean values. In contrast, porosity resulted in almost 100% variation in mean σy values. Pore size was not a significant factor for mechanical behavior, although it is a critical factor in the biological behavior of the scaffolds. Quantifying the influence of porosity, H/D ratio and pore size on bench-top tested bulk mechanical properties can help optimize the development of bone scaffolds from a biomechanical perspective.
Collapse
|
7
|
Al-Barqawi MO, Church B, Thevamaran M, Thoma DJ, Rahman A. Experimental Validation and Evaluation of the Bending Properties of Additively Manufactured Metallic Cellular Scaffold Structures for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3447. [PMID: 35629475 PMCID: PMC9143386 DOI: 10.3390/ma15103447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
The availability of additive manufacturing enables the fabrication of cellular bone tissue engineering scaffolds with a wide range of structural and architectural possibilities. The purpose of bone tissue engineering scaffolds is to repair critical size bone defects due to extreme traumas, tumors, or infections. This research study presented the experimental validation and evaluation of the bending properties of optimized bone scaffolds with an elastic modulus that is equivalent to the young's modulus of the cortical bone. The specimens were manufactured using laser powder bed fusion technology. The morphological properties of the manufactured specimens were evaluated using both dry weighing and Archimedes techniques, and minor variations in the relative densities were observed in comparison with the computer-aided design files. The bending modulus of the cubic and diagonal scaffolds were experimentally investigated using a three-point bending test, and the results were found to agree with the numerical findings. A higher bending modulus was observed in the diagonal scaffold design. The diagonal scaffold was substantially tougher, with considerably higher energy absorption before fracture. The shear modulus of the diagonal scaffold was observed to be significantly higher than the cubic scaffold. Due to bending, the pores at the top side of the diagonal scaffold were heavily compressed compared to the cubic scaffold due to the extensive plastic deformation occurring in diagonal scaffolds and the rapid fracture of struts in the tension side of the cubic scaffold. The failure in struts in tension showed signs of ductility as necking was observed in fractured struts. Moreover, the fractured surface was observed to be rough and dull as opposed to being smooth and bright like in brittle fractures. Dimple fracture was observed using scanning electron microscopy as a result of microvoids emerging in places of high localized plastic deformation. Finally, a comparison of the mechanical properties of the studied BTE scaffolds with the cortical bone properties under longitudinal and transverse loading was investigated. In conclusion, we showed the capabilities of finite element analysis and additive manufacturing in designing and manufacturing promising scaffold designs that can replace bone segments in the human body.
Collapse
Affiliation(s)
- Mohammad O. Al-Barqawi
- Department of Civil and Environmental Engineering, University of Wisconsin, Milwaukee, WI 53211, USA;
| | - Benjamin Church
- Department of Material Science and Engineering, University of Wisconsin, Milwaukee, WI 53211, USA;
| | - Mythili Thevamaran
- Department of Material Science and Engineering, University of Wisconsin, Madison, WI 53706, USA; (M.T.); (D.J.T.)
| | - Dan J. Thoma
- Department of Material Science and Engineering, University of Wisconsin, Madison, WI 53706, USA; (M.T.); (D.J.T.)
| | - Adeeb Rahman
- Department of Civil and Environmental Engineering, University of Wisconsin, Milwaukee, WI 53211, USA;
| |
Collapse
|