1
|
Išljamović M, Bonvin D, Milojević M, Stojanović S, Spasić M, Stojković B, Janošević P, Otašević S, Ebersold MM. Antifungal Effect of Poly(methyl methacrylate) with Farnesol and Undecylenic Acid against Candida albicans Biofilm Formation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3936. [PMID: 39203113 PMCID: PMC11355639 DOI: 10.3390/ma17163936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024]
Abstract
The control of Candida albicans biofilm formation on dentures made of poly(methyl methacrylate) (PMMA) is an important challenge due to the high resistance to antifungal drugs. Interestingly, the natural compounds undecylenic acid (UDA) and farnesol (FAR) both prevent C. albicans biofilm formation and could have a synergetic effect. We therefore modified PMMA with a combination of UDA and FAR (UDA+FAR), aiming to obtain the antifungal PMMA_UDA+FAR composites. Equal concentrations of FAR and UDA were added to PMMA to reach 3%, 6%, and 9% in total of both compounds in composites. The physico-chemical properties of the composites were characterized by Fourier-transform infrared spectroscopy and water contact angle measurement. The antifungal activity of the composites was tested on both biofilm and planktonic cells with an XTT test 0 and 6 days after the composites' preparation. The effect of the UDA+FAR combination on C. albicans filamentation was studied in agar containing 0.0125% and 0.4% UDA+FAR after 24 h and 48 h of incubation. The results showed the presence of UDA and FAR on the composite and decreases in the water contact angle and metabolic activity of both the biofilm and planktonic cells at both time points at non-toxic UDA+FAR concentrations. Thus, the modification of PMMA with a combination of UDA+FAR reduces C. albicans biofilm formation on dentures and could be a promising anti-Candida strategy.
Collapse
Affiliation(s)
- Milica Išljamović
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Department of Dental Health Care, Health Center Niš, 18000 Niš, Serbia
| | - Debora Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Milena Milojević
- Department of Pharmacy, Faculty of Medicine, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000 Niš, Serbia
| | - Simona Stojanović
- Department of Oral Surgery, Faculty of Medicine, University in Niš, Blvd. Dr Zoran Djindjić 81, 18000 Niš, Serbia
| | - Milan Spasić
- The Niš Dental University Clinic, Blvd. Dr Zoran Djindjić 52, 18000 Niš, Serbia
| | - Branislava Stojković
- Department of Preventive and Pediatric Dentistry, Faculty of Medicine, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000 Niš, Serbia
| | - Predrag Janošević
- Department of Orthodontics, Faculty of Medicine, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000 Niš, Serbia
| | - Suzana Otašević
- Department of Microbiology and Immunology, Faculty of Medicine, University of Niš, Blv. Dr Zoran Djindjić 81, 18000 Niš, Serbia
- Public Health Institute Niš, Blvd. Dr Zoran Djindjić 50, 18000 Niš, Serbia
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Le Bars P, Kouadio AA, Amouriq Y, Bodic F, Blery P, Bandiaky ON. Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures. Polymers (Basel) 2023; 16:40. [PMID: 38201705 PMCID: PMC10780608 DOI: 10.3390/polym16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
This review focuses on the current disparities and gaps in research on the characteristics of the oral ecosystem of denture wearers, making a unique contribution to the literature on this topic. We aimed to synthesize the literature on the state of current knowledge concerning the biological behavior of the different polymers used in prosthetics. Whichever polymer is used in the composition of the prosthetic base (poly methyl methacrylate acrylic (PMMA), polyamide (PA), or polyether ether ketone (PEEK)), the simple presence of a removable prosthesis in the oral cavity can disturb the balance of the oral microbiota. This phenomenon is aggravated by poor oral hygiene, resulting in an increased microbial load coupled with the reduced salivation that is associated with older patients. In 15-70% of patients, this imbalance leads to the appearance of inflammation under the prosthesis (denture stomatitis, DS). DS is dependent on the equilibrium-as well as on the reciprocal, fragile, and constantly dynamic conditions-between the host and the microbiome in the oral cavity. Several local and general parameters contribute to this balance. Locally, the formation of microbial plaque on dentures (DMP) depends on the phenomena of adhesion, aggregation, and accumulation of microorganisms. To limit DMP, apart from oral and lifestyle hygiene, the prosthesis must be polished and regularly immersed in a disinfectant bath. It can also be covered with an insulating coating. In the long term, relining and maintenance of the prosthesis must also be established to control microbial proliferation. On the other hand, several general conditions specific to the host (aging; heredity; allergies; diseases such as diabetes mellitus or cardiovascular, respiratory, or digestive diseases; and immunodeficiencies) can make the management of DS difficult. Thus, the second part of this review addresses the complexity of the management of DMP depending on the polymer used. The methodology followed in this review comprised the formulation of a search strategy, definition of the inclusion and exclusion criteria, and selection of studies for analysis. The PubMed database was searched independently for pertinent studies. A total of 213 titles were retrieved from the electronic databases, and after applying the exclusion criteria, we selected 84 articles on the possible microbial interactions between the prosthesis and the oral environment, with a particular emphasis on Candida albicans.
Collapse
Affiliation(s)
- Pierre Le Bars
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Alain Ayepa Kouadio
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Department of Prosthetic Dentistry, Faculty of Dentistry, CHU, Abidjan P.O. Box 612, Côte d’Ivoire
| | - Yves Amouriq
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - François Bodic
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Pauline Blery
- Department of Prosthetic Dentistry, Faculty of Dentistry, Nantes University, 1 Place Alexis Ricordeau, F-44042 Nantes, France; (A.A.K.); (Y.A.); (F.B.); (P.B.)
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| | - Octave Nadile Bandiaky
- Nantes University, Oniris, University of Angers, CHU Nantes (Clinical Investigation Unit Odontology), INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000 Nantes, France;
| |
Collapse
|
3
|
Chladek G. Composite and Polymeric Materials for Dentistry: Enhancing Antimicrobial and Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1432. [PMID: 36837061 PMCID: PMC9964979 DOI: 10.3390/ma16041432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Billions of people suffer from dental problems and that number is constantly increasing [...].
Collapse
Affiliation(s)
- Grzegorz Chladek
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| |
Collapse
|