1
|
Bayram C, Ozturk S, Karaosmanoglu B, Gultekinoglu M, Taskiran EZ, Ulubayram K, Majd H, Ahmed J, Edirisinghe M. Microfluidic Fabrication of Gelatin-Nano Hydroxyapatite Scaffolds for Enhanced Control of Pore Size Distribution and Osteogenic Differentiation of Dental Pulp Stem Cells. Macromol Biosci 2024; 24:e2400279. [PMID: 39388643 DOI: 10.1002/mabi.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Indexed: 10/12/2024]
Abstract
The combination of gelatin and hydroxyapatite (HA) has emerged as a promising strategy in dental tissue engineering due to its favorable biocompatibility, mechanical properties, and ability to support cellular activities essential for tissue regeneration, rendering them ideal components for hard tissue applications. Besides, precise control over interconnecting porosity is of paramount importance for tissue engineering materials. Conventional methods for creating porous scaffolds frequently encounter difficulties in regulating pore size distribution. This study demonstrates the fabrication of gelatin-nano HA scaffolds with uniform porosity using a T-type junction microfluidic device in a single-step process. Significant improvements in control over the pore size distribution are achieved by regulating the flow parameters, resulting in effective and time-efficient manufacturing comparable in quality to the innovative 3D bioprinting techniques. The overall porosity of the scaffolds exceeded 60%, with a remarkably narrow size distribution. The incorporation of nano-HAinto 3D porous gelatin scaffolds successfully induced osteogenic differentiation in stem cells at both the protein and gene levels, as evidenced by the significant increase in osteocalcin (OCN), an important marker of osteogenic differentiation. The OCN levels are 26 and 43 times higher for gelatin and gelatin-HA scaffolds, respectively, compared to the control group.
Collapse
Affiliation(s)
- Cem Bayram
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Sukru Ozturk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Merve Gultekinoglu
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Hamta Majd
- Department of Mechanical Engineering, University College London (UCL), London, WC1E7JE, UK
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London (UCL), London, WC1E7JE, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London (UCL), London, WC1E7JE, UK
| |
Collapse
|
2
|
Meskher H, Sharifianjazi F, Tavamaishvili K, Irandoost M, Nejadkoorki D, Makvandi P. Limitations, challenges and prospective solutions for bioactive glasses-based nanocomposites for dental applications: A critical review. J Dent 2024; 150:105331. [PMID: 39216818 DOI: 10.1016/j.jdent.2024.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Several nanomaterials have been recently used to overcome various challenges in the dental domain. Bioactive glasses, a class of bioceramics, with their outstanding properties including but not limited to their strong biocompatibility, antibacterial characteristics, and bioactivity inside the body's internal milieu have made them valuable biomaterials in a variety of dental domains. The utilization of nanomaterials has improved the performance of teeth, and the incorporation of bioactive glasses has the field of dentistry at an unsurpassed level in different categories such as esthetic and restorative dentistry, periodontics and dental implants, orthodontics, and endodontics. The current study discusses the most recent developments of the bioactive glasses' creation and implementation for dental applications, as well as the challenges and opportunities still facing the field. This work provides an overview of the current obstacles and potential future prospects for bioactive glasses-based nanocomposites to improve their dental uses. It also emphasizes the great potential synergistic effects of bioactive glasses used with other nanomaterials for dental applications.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Process Engineering, College of Science and Technology, Chadli Bendjedid University, 36000, Algeria
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str, Tbilisi 0160, Georgia
| | - Maryam Irandoost
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India; Centre of Research Impact and Outcome, Chitkara UniversityInstitute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
3
|
Seraji AA, Nahavandi R, Kia A, Rabbani Doost A, Keshavarz V, Sharifianjazi F, Tavamaishvili K, Makarem D. Finite element analysis and in vitro tests on endurance life and durability of composite bone substitutes. Front Bioeng Biotechnol 2024; 12:1417440. [PMID: 39301173 PMCID: PMC11410606 DOI: 10.3389/fbioe.2024.1417440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Bone structures facilitate the regeneration and repair of bone tissue in regions where it has been damaged or destroyed, either temporarily or permanently. Therefore, the bone's fatigue strength and durability are crucial to its efficacy and longevity. Several variables, such as the construct's material qualities, design, and production procedure, loading and unloading cycles, and physiological conditions influence the endurance life of bone constructs. Metals, ceramics, and polymers are all routinely utilized to create bone substitutes, and each of these materials has unique features that might affect the fatigue strength and endurance life of the final product. The mechanical performance and capacity to promote bone tissue regeneration may be affected by the scaffold's design, porosity, and pore size. Researchers employ mechanical testing under cyclic loading circumstances as one example of an experimental approach used to assess bone construction endurance. These analyses can give us important information about the stress-strain behavior, resistance to multiple loading cycles, and fatigue strength of the new structure. Predicting the endurance life of the developed construct may also be possible with the use of simulations and numerical analyses. Hence, in order to create reliable and efficient constructs for bone tissue engineering, it is crucial to understand their fatigue strength and durability. The purpose of this study is to analyze the effective parameters for fatigue strength of bone structures and to gather the models and evaluations utilized in endurance life assessments.
Collapse
Affiliation(s)
- Amir Abbas Seraji
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Reza Nahavandi
- Department of Biochemical and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amir Kia
- Department of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - Ahad Rabbani Doost
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Vahid Keshavarz
- Department of Materials Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin, Iran
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | | | - Dorna Makarem
- Escuela Tecnica Superior de Ingenieros de Telecomunicacion Politecnica de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Cherukuri R, Kammala AK, Thomas TJ, Saylor L, Richardson L, Kim S, Ferrer M, Acedo C, Song MJ, Gaharwar AK, Menon R, Han A. High-Throughput 3D-Printed Model of the Feto-Maternal Interface for the Discovery and Development of Preterm Birth Therapies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41892-41906. [PMID: 39078878 PMCID: PMC11604266 DOI: 10.1021/acsami.4c08731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Spontaneous preterm birth (PTB) affects around 11% of births, posing significant risks to neonatal health due to the inflammation at the fetal-maternal interface (FMi). This inflammation disrupts immune tolerance during pregnancy, often leading to PTB. While organ-on-a-chip (OOC) devices effectively mimic the physiology, pathophysiology, and responses of FMi, their relatively low throughput limits their utility in high-throughput testing applications. To overcome this, we developed a three-dimensional (3D)-printed model that fits in a well of a 96-well plate and can be mass-produced while also accurately replicating FMi, enabling efficient screening of drugs targeting FMi inflammation. Our model features two cell culture chambers (maternal and fetal cells) interlinked via an array of microfluidic channels. It was thoroughly validated, ensuring cell viability, metabolic activity, and cell-specific markers. The maternal chamber was exposed to lipopolysaccharides (LPS) to induce an inflammatory state, and proinflammatory cytokines in the culture supernatant were quantified. Furthermore, the efficacy of anti-inflammatory inhibitors in mitigating LPS-induced inflammation was investigated. Results demonstrated that our model supports robust cell growth, maintains viability, and accurately mimics PTB-associated inflammation. This high-throughput 3D-printed model offers a versatile platform for drug screening, promising advancements in drug discovery and PTB prevention.
Collapse
Affiliation(s)
- Rahul Cherukuri
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Tilu Jain Thomas
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Leah Saylor
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Lauren Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, 20892, USA
| | - Cristina Acedo
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, 20892, USA
| | - Min Jae Song
- 3D Tissue Bioprinting Laboratory, National Centre for Advancing Translational Sciences, National Institute of Sciences, Bethesda, MD, 20892, USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Texas, 77555, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77840, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
- Department of Chemical Engineering, Texas A&M University, College Station, TX, 77840, USA
| |
Collapse
|
5
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
6
|
Wang S, Qiu Y, Zhu F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem 2024; 440:138060. [PMID: 38211407 DOI: 10.1016/j.foodchem.2023.138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.
Collapse
Affiliation(s)
- Sunan Wang
- Canadian Food and Wine Institute, Niagara College, 135 Taylor Road, Niagara-on-the-Lake, Ontario L0S 1J0, Canada; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yi Qiu
- Division of Engineering Science, Faculty of Applied Science and Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Putra NE, Moosabeiki V, Leeflang MA, Zhou J, Zadpoor AA. Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron-manganese scaffolds. Acta Biomater 2024; 178:340-351. [PMID: 38395100 DOI: 10.1016/j.actbio.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Additively manufactured (AM) biodegradable porous iron-manganese (FeMn) alloys have recently been developed as promising bone-substituting biomaterials. However, their corrosion fatigue behavior has not yet been studied. Here, we present the first study on the corrosion fatigue behavior of an extrusion-based AM porous Fe35Mn alloy under cyclic loading in air and in the revised simulated body fluid (r-SBF), including the fatigue crack morphology and distribution in the porous structure. We hypothesized that the fatigue behavior of the architected AM Fe35Mn alloy would be strongly affected by the simultaneous biodegradation process. We defined the endurance limit as the maximum stress at which the scaffolds could undergo 3 million loading cycles without failure. The endurance limit of the scaffolds was determined to be 90 % of their yield strength in air, but only 60 % in r-SBF. No notable crack formation in the specimens tested in air was observed even after loading up to 90 % of their yield strength. As for the specimens tested in r-SBF, however, cracks formed in the specimens subjected to loads exceeding 60 % of their yield strength appeared to initiate on the periphery and propagate toward the internal struts. Altogether, the results show that the extrusion-based AM porous Fe35Mn alloy is capable of tolerating up to 60 % of its yield strength for up to 3 million cycles, which corresponds to 1.5 years of use of load-bearing implants subjected to repetitive gait cycles. The fatigue performance of the alloy thus further enhances its potential for trabecular bone substitution subjected to cyclic compressive loading. STATEMENT OF SIGNIFICANCE: Fatigue behavior of extrusion-based AM porous Fe35Mn alloy scaffolds in air and revised simulated body fluid was studied. The Fe35Mn alloy scaffolds endured 90 % of their yield strength for up to 3 × 106 loading cycles in air. Moreover, the scaffolds tolerated 3 × 106 loading cycles at 60 % of their yield strength in revised simulated body fluid. The Fe35Mn alloy scaffolds exhibited a capacity of withstanding 1.5-year physiological loading when used as bone implants.
Collapse
Affiliation(s)
- Niko E Putra
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands.
| | - Vahid Moosabeiki
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Marius A Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| |
Collapse
|
8
|
Yarali E, Klimopoulou M, David K, Boukany PE, Staufer U, Fratila-Apachitei LE, Zadpoor AA, Accardo A, Mirzaali MJ. Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratio: Auxetic vs. non-auxetic meta-biomaterials. Acta Biomater 2024; 177:228-242. [PMID: 38325707 DOI: 10.1016/j.actbio.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
The Poisson's ratio and elastic modulus are two parameters determining the elastic behavior of biomaterials. While the effects of elastic modulus on the cell response is widely studied, very little is known regarding the effects of the Poisson's ratio. The micro-architecture of meta-biomaterials determines not only the Poisson's ratio but also several other parameters that also influence cell response, such as porosity, pore size, and effective elastic modulus. It is, therefore, very challenging to isolate the effects of the Poisson's ratio from those of other micro-architectural parameters. Here, we computationally design meta-biomaterials with controlled Poisson's ratios, ranging between -0.74 and +0.74, while maintaining consistent porosity, pore size, and effective elastic modulus. The 3D meta-biomaterials were additively manufactured at the micro-scale using two-photon polymerization (2PP), and were mechanically evaluated at the meso‑scale. The response of murine preosteoblasts to these meta-biomaterials was then studied using in vitro cell culture models. Meta-biomaterials with positive Poisson's ratios resulted in higher metabolic activity than those with negative values. The cells could attach and infiltrate all meta-biomaterials from the bottom to the top, fully covering the scaffolds after 17 days of culture. Interestingly, the meta-biomaterials exhibited different cell-induced deformations (e.g., shrinkage or local bending) as observed via scanning electron microscopy. The outcomes of osteogenic differentiation (i.e., Runx2 immunofluorescent staining) and matrix mineralization (i.e., Alizarin red staining) assays indicated the significant potential impact of these meta-biomaterials in the field of bone tissue engineering, paving the way for the development of advanced bone meta-implants. STATEMENT OF SIGNIFICANCE: We studied the influence of Poisson's ratio on bone cell response in meta-biomaterials. While elastic modulus effects are well-studied, the impact of Poisson's ratio, especially negative values found in architected biomaterials, remains largely unexplored. The complexity arises from intertwined micro-architectural parameters, such as porosity and elastic modulus, making it challenging to isolate the Poisson's ratio. To overcome this limitation, this study employed rational computational design to create meta-biomaterials with controlled Poisson's ratios, alongside consistent effective elastic modulus, porosity, and pore size. The study reveals that two-photon polymerized 3D meta-biomaterials with positive Poisson's ratios displayed higher metabolic activity, while all the developed meta-biomaterials supported osteogenic differentiation of preosteoblasts as well as matrix mineralization. The outcomes pave the way for the development of advanced 3D bone tissue models and meta-implants.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands; Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - Maria Klimopoulou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Kristen David
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Urs Staufer
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| |
Collapse
|
9
|
Mirzaali MJ, Zadpoor AA. Orthopedic meta-implants. APL Bioeng 2024; 8:010901. [PMID: 38250670 PMCID: PMC10799688 DOI: 10.1063/5.0179908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Meta-biomaterials, engineered materials with distinctive combinations of mechanical, physical, and biological properties stemming from their micro-architecture, have emerged as a promising domain within biomedical engineering. Correspondingly, meta-implants, which serve as the device counterparts of meta-biomaterials, offer exceptional functionalities, holding great potential for addressing complex skeletal diseases. This paper presents a comprehensive overview of the various types of meta-implants, including hybrid, shape-morphing, metallic clay, and deployable meta-implants, highlighting their unprecedented properties and recent achievement in the field. This paper also delves into the potential future developments of meta-implants, addressing the exploration of multi-functionalities in meta-biomaterials and their applications in diverse biomedical fields.
Collapse
Affiliation(s)
- Mohammad J. Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft 2628CD, The Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Delft 2628CD, The Netherlands
| |
Collapse
|
10
|
Pahlavani H, Tsifoutis-Kazolis K, Saldivar MC, Mody P, Zhou J, Mirzaali MJ, Zadpoor AA. Deep Learning for Size-Agnostic Inverse Design of Random-Network 3D Printed Mechanical Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303481. [PMID: 37899747 DOI: 10.1002/adma.202303481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/06/2023] [Indexed: 10/31/2023]
Abstract
Practical applications of mechanical metamaterials often involve solving inverse problems aimed at finding microarchitectures that give rise to certain properties. The limited resolution of additive manufacturing techniques often requires solving such inverse problems for specific specimen sizes. Moreover, the candidate microarchitectures should be resistant to fatigue and fracture. Such a multi-objective inverse design problem is formidably difficult to solve but its solution is the key to real-world applications of mechanical metamaterials. Here, a modular approach titled "Deep-DRAM" that combines four decoupled models is proposed, including two deep learning (DL) models, a deep generative model based on conditional variational autoencoders, and direct finite element (FE) simulations. Deep-DRAM integrates these models into a framework capable of finding many solutions to the posed multi-objective inverse design problem based on random-network unit cells. Using an extensive set of simulations as well as experiments performed on 3D printed specimens, it is demonstrate that: 1) the predictions of the DL models are in agreement with FE simulations and experimental observations, 2) an enlarged envelope of achievable elastic properties (e.g., rare combinations of double auxeticity and high stiffness) is realized using the proposed approach, and 3) Deep-DRAM can provide many solutions to the considered multi-objective inverse design problem.
Collapse
Affiliation(s)
- Helda Pahlavani
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Kostas Tsifoutis-Kazolis
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mauricio C Saldivar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Prerak Mody
- Division of Image Processing (LKEB), Radiology, Leiden University Medical Center (LUMC), Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
11
|
Tebianian M, Aghaie S, Razavi Jafari NS, Elmi Hosseini SR, Pereira AB, Fernandes FAO, Farbakhti M, Chen C, Huo Y. A Review of the Metal Additive Manufacturing Processes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7514. [PMID: 38138655 PMCID: PMC10744938 DOI: 10.3390/ma16247514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Metal additive manufacturing (AM) is a layer-by-layer process that makes the direct manufacturing of various industrial parts possible. This method facilitates the design and fabrication of complex industrial, advanced, and fine parts that are used in different industry sectors, such as aerospace, medicine, turbines, and jewelry, where the utilization of other fabrication techniques is difficult or impossible. This method is advantageous in terms of dimensional accuracy and fabrication speed. However, the parts fabricated by this method may suffer from faults such as anisotropy, micro-porosity, and defective joints. Metals like titanium, aluminum, stainless steels, superalloys, etc., have been used-in the form of powder or wire-as feed materials in the additive manufacturing of various parts. The main criterion that distinguishes different additive manufacturing processes from each other is the deposition method. With regard to this criterion, AM processes can be divided into four classes: local melting, sintering, sheet forming, and electrochemical methods. Parameters affecting the properties of the additive-manufactured part and the defects associated with an AM process determine the method by which a certain part should be manufactured. This study is a survey of different additive manufacturing processes, their mechanisms, capabilities, shortcomings, and the general properties of the parts manufactured by them.
Collapse
Affiliation(s)
- Mohaddeseh Tebianian
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 13114-16846, Iran
| | - Sara Aghaie
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 13114-16846, Iran
| | - Nazanin Sadat Razavi Jafari
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 13114-16846, Iran
| | - Seyed Reza Elmi Hosseini
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 13114-16846, Iran
| | - António B. Pereira
- TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Fábio A. O. Fernandes
- TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Mojtaba Farbakhti
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 13114-16846, Iran
| | - Chao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Yuanming Huo
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
12
|
Moosabeiki V, de Winter N, Cruz Saldivar M, Leeflang MA, Witbreuk MMEH, Lagerburg V, Mirzaali MJ, Zadpoor AA. 3D printed patient-specific fixation plates for the treatment of slipped capital femoral epiphysis: Topology optimization vs. conventional design. J Mech Behav Biomed Mater 2023; 148:106173. [PMID: 37866280 DOI: 10.1016/j.jmbbm.2023.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Orthopedic plates are commonly used after osteotomies for temporary fixation of bones. Patient-specific plates have recently emerged as a promising fixation device. However, it is unclear how various strategies used for the design of such plates perform in comparison with each other. Here, we compare the biomechanical performance of 3D printed patient-specific bone plates designed using conventional computer-aided design (CAD) techniques with those designed with the help of topology optimization (TO) algorithms, focusing on cases involving slipped capital femoral epiphysis (SCFE). We established a biomechanical testing protocol to experimentally assess the performance of the designed plates while measuring the full-field strain using digital image correlation. We also created an experimentally validated finite element model to analyze the performance of the plates under physiologically relevant loading conditions. The results indicated that the TO construct exhibited higher ultimate load and biomechanical performance as compared to the CAD construct, suggesting that TO is a viable approach for the design of such patient-specific bone plates. The TO plate also distributed stress more evenly over the screws, likely resulting in more durable constructs and improved anatomical conformity while reducing the risk of screw and plate failure during cyclic loading. Although differences existed between finite element analysis and experimental testing, this study demonstrated that finite element modelling can be used as a reliable method for evaluating and optimizing plates for SCFE patients. In addition to enhancing the mechanical performance of patient-specific fixation plates, the utilization of TO in plate design may also improve the surgical outcome and decrease the recovery time by reducing the plate and incision sizes.
Collapse
Affiliation(s)
- V Moosabeiki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628, CD, Delft, the Netherlands.
| | - N de Winter
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628, CD, Delft, the Netherlands; Medical Physics, OLVG, Oosterpark 9, 1091, AC, Amsterdam, the Netherlands
| | - M Cruz Saldivar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628, CD, Delft, the Netherlands
| | - M A Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628, CD, Delft, the Netherlands
| | - M M E H Witbreuk
- Department of Orthopaedic Surgery, OLVG, Oosterpark 9, 1091, AC, Amsterdam, the Netherlands
| | - V Lagerburg
- Medical Physics, OLVG, Oosterpark 9, 1091, AC, Amsterdam, the Netherlands
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628, CD, Delft, the Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628, CD, Delft, the Netherlands; Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands
| |
Collapse
|
13
|
Gnanasagaran CL, Ramachandran K, Jamadon NH, Kumar VH, Muchtar A, Pazhani A, Ayaz B. Microstructural and mechanical behaviours of Y-TZP prepared via slip-casting and fused deposition modelling (FDM). Heliyon 2023; 9:e21705. [PMID: 37954343 PMCID: PMC10638070 DOI: 10.1016/j.heliyon.2023.e21705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
This paper reports the microstructural characteristics and mechanical properties of yttria-stabilized zirconia prepared via fused deposition modelling and slip casting. X-Ray Diffraction peaks indicated that yttria-stabilized zirconia crystallized in tetragonal structure for both slip casted(SC) and fused deposition modelled(FDM) samples. Further, scanning electron microscopy of slip casted sample showcased closely packed structure with fine grains and an average grain size of ∼65 nm whilst fused deposition modelled samples showcased non-homogeneous pores with ∼20 nm grain size. Average relative density of slip casted samples was ∼99.4 % while that of fused deposition modelled sample exhibited ∼96.2 %. The Vickers Hardness of slip casted (∼15.26 ± 0.4 GPa) was ∼10 % higher than the fused deposition modelled samples (∼13.79 ± 0.3 GPa). Likewise, indentation fracture toughness of slip casted (5.78 ± 0.5 MPa m1/2) was 14 % higher than fused deposition modelled samples which could have been due to the change in grain size as well as porosity of the ceramics. Compressive strength of the fused deposition modelled samples was 32 % less than slip casted samples (∼510 ± 10 MPa) due to its non-homogenous pores which led to weakening van der Waals force of attraction.
Collapse
Affiliation(s)
- Constance L. Gnanasagaran
- School of Engineering and the Environment, Kingston University, Roehampton Vale Campus, London, SW15 3DW, United Kingdom
| | - Karthikeyan Ramachandran
- School of Engineering and the Environment, Kingston University, Roehampton Vale Campus, London, SW15 3DW, United Kingdom
- School of Mechanical Engineering, Coventry University, Coventry, CV1 2JH, United Kingdom
| | - Nashrah Hani Jamadon
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | | | - Andanastuti Muchtar
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ashwath Pazhani
- School of Mechanical Engineering, Coventry University, Coventry, CV1 2JH, United Kingdom
| | - Beenish Ayaz
- School of Engineering and the Environment, Kingston University, Roehampton Vale Campus, London, SW15 3DW, United Kingdom
| |
Collapse
|
14
|
van Kootwijk A, Jonker BP, Wolvius EB, Saldivar MC, Leeflang MA, Zhou J, Tümer N, Mirzaali MJ, Zadpoor AA. Biomechanical evaluation of additively manufactured patient-specific mandibular cage implants designed with a semi-automated workflow: A cadaveric and retrospective case study. J Mech Behav Biomed Mater 2023; 146:106097. [PMID: 37678107 DOI: 10.1016/j.jmbbm.2023.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Mandibular reconstruction using patient-specific cage implants is a promising alternative to the vascularized free flap reconstruction for nonirradiated patients with adequate soft tissues, or for patients whose clinical condition is not conducive to microsurgical reconstruction. This study aimed to assess the biomechanical performance of 3D printed patient-specific cage implants designed with a semi-automated workflow in a combined cadaveric and retrospective case series study. METHODS We designed cage implants for two human cadaveric mandibles using our previously developed design workflow. The biomechanical performance of the implants was assessed with the finite element analysis (FEA) and quasi-static biomechanical testing. Digital image correlation (DIC) was used to measure the full-field strains and validate the FE models by comparing the distribution of maximum principal strains within the bone. The retrospective study of a case series involved three patients, each of whom was treated with a cage implant of similar design. The biomechanical performance of these implants was evaluated using the experimentally validated FEA under the scenarios of both mandibular union and nonunion. RESULTS No implant or screw failure was observed prior to contralateral bone fracture during the quasi-static testing of both cadaveric mandibles. The FEA and DIC strain contour plots indicated a strong linear correlation (r = 0.92) and a low standard error (SE=29.32με), with computational models yielding higher strain values by a factor of 2.7. The overall stresses acting on the case series' implants stayed well below the yield strength of additively manufactured (AM) commercially pure titanium, when simulated under highly strenuous chewing conditions. Simulating a full union between the graft and remnant mandible yielded a substantial reduction (72.7±1.5%) in local peak stresses within the implants as compared to a non-bonded graft. CONCLUSIONS This study shows the suitability of the developed semi-automated workflow in designing patient-specific cage implants with satisfactory mechanical functioning under demanding chewing conditions. The proposed workflow can aid clinical engineers in creating reconstruction systems and streamlining pre-surgical planning. Nevertheless, more research is still needed to evaluate the osteogenic potential of bone graft insertions.
Collapse
Affiliation(s)
- A van Kootwijk
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GE, Rotterdam, the Netherlands
| | - B P Jonker
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GE, Rotterdam, the Netherlands
| | - E B Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GE, Rotterdam, the Netherlands
| | - M Cruz Saldivar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, the Netherlands
| | - M A Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, the Netherlands
| | - J Zhou
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, the Netherlands
| | - N Tümer
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, the Netherlands.
| | - M J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, the Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, the Netherlands
| |
Collapse
|
15
|
Fenelon M, Galvez P, Kalbermatten D, Scolozzi P, Madduri S. Emerging Strategies for the Biofabrication of Multilayer Composite Amniotic Membranes for Biomedical Applications. Int J Mol Sci 2023; 24:14424. [PMID: 37833872 PMCID: PMC10572287 DOI: 10.3390/ijms241914424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The amniotic membrane (AM) is the innermost part of the fetal placenta, which surrounds and protects the fetus. Due to its structural components (stem cells, growth factors, and proteins), AMs display unique biological properties and are a widely available and cost-effective tissue. As a result, AMs have been used for a century as a natural biocompatible dressing for healing corneal and skin wounds. To further increase its properties and expand its applications, advanced hybrid materials based on AMs have recently been developed. One existing approach is to combine the AM with a secondary material to create composite membranes. This review highlights the increasing development of new multilayer composite-based AMs in recent years and focuses on the benefits of additive manufacturing technologies and electrospinning, the most commonly used strategy, in expanding their use for tissue engineering and clinical applications. The use of AMs and multilayer composite-based AMs in the context of nerve regeneration is particularly emphasized and other tissue engineering applications are also discussed. This review highlights that these electrospun multilayered composite membranes were mainly created using decellularized or de-epithelialized AMs, with both synthetic and natural polymers used as secondary materials. Finally, some suggestions are provided to further enhance the biological and mechanical properties of these composite membranes.
Collapse
Affiliation(s)
- Mathilde Fenelon
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.F.); (P.S.)
- INSERM, BIOTIS, U1026, Université de Bordeaux, 33076 Bordeaux, France;
| | - Paul Galvez
- INSERM, BIOTIS, U1026, Université de Bordeaux, 33076 Bordeaux, France;
| | - Daniel Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| | - Paolo Scolozzi
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.F.); (P.S.)
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
16
|
Shang J, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Zhao J, Liang W, Zeng B. Recent developments in nanomaterials for upgrading treatment of orthopedics diseases. Front Bioeng Biotechnol 2023; 11:1221365. [PMID: 37621999 PMCID: PMC10446844 DOI: 10.3389/fbioe.2023.1221365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
Nanotechnology has changed science in the last three decades. Recent applications of nanotechnology in the disciplines of medicine and biology have enhanced medical diagnostics, manufacturing, and drug delivery. The latest studies have demonstrated this modern technology's potential for developing novel methods of disease detection and treatment, particularly in orthopedics. According to recent developments in bone tissue engineering, implantable substances, diagnostics and treatment, and surface adhesives, nanomedicine has revolutionized orthopedics. Numerous nanomaterials with distinctive chemical, physical, and biological properties have been engineered to generate innovative medication delivery methods for the local, sustained, and targeted delivery of drugs with enhanced therapeutic efficacy and minimal or no toxicity, indicating a very promising strategy for effectively controlling illnesses. Extensive study has been carried out on the applications of nanotechnology, particularly in orthopedics. Nanotechnology can revolutionize orthopedics cure, diagnosis, and research. Drug delivery precision employing nanotechnology using gold and liposome nanoparticles has shown especially encouraging results. Moreover, the delivery of drugs and biologics for osteosarcoma is actively investigated. Different kind of biosensors and nanoparticles has been used in the diagnosis of bone disorders, for example, renal osteodystrophy, Paget's disease, and osteoporosis. The major hurdles to the commercialization of nanotechnology-based composite are eventually examined, thus helping in eliminating the limits in connection to some pre-existing biomaterials for orthopedics, important variables like implant life, quality, cure cost, and pain and relief from pain. The potential for nanotechnology in orthopedics is tremendous, and most of it looks to remain unexplored, but not without challenges. This review aims to highlight the up tp date developments in nanotechnology for boosting the treatment modalities for orthopedic ailments. Moreover, we also highlighted unmet requirements and present barriers to the practical adoption of biomimetic nanotechnology-based orthopedic treatments.
Collapse
Affiliation(s)
- Jinxiang Shang
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bin Zeng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
17
|
Yarali E, Zadpoor AA, Staufer U, Accardo A, Mirzaali MJ. Auxeticity as a Mechanobiological Tool to Create Meta-Biomaterials. ACS APPLIED BIO MATERIALS 2023; 6:2562-2575. [PMID: 37319268 PMCID: PMC10354748 DOI: 10.1021/acsabm.3c00145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Mechanical and morphological design parameters, such as stiffness or porosity, play important roles in creating orthopedic implants and bone substitutes. However, we have only a limited understanding of how the microarchitecture of porous scaffolds contributes to bone regeneration. Meta-biomaterials are increasingly used to precisely engineer the internal geometry of porous scaffolds and independently tailor their mechanical properties (e.g., stiffness and Poisson's ratio). This is motivated by the rare or unprecedented properties of meta-biomaterials, such as negative Poisson's ratios (i.e., auxeticity). It is, however, not clear how these unusual properties can modulate the interactions of meta-biomaterials with living cells and whether they can facilitate bone tissue engineering under static and dynamic cell culture and mechanical loading conditions. Here, we review the recent studies investigating the effects of the Poisson's ratio on the performance of meta-biomaterials with an emphasis on the relevant mechanobiological aspects. We also highlight the state-of-the-art additive manufacturing techniques employed to create meta-biomaterials, particularly at the micrometer scale. Finally, we provide future perspectives, particularly for the design of the next generation of meta-biomaterials featuring dynamic properties (e.g., those made through 4D printing).
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A. Zadpoor
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Urs Staufer
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Angelo Accardo
- Department
of Precision and Microsystems Engineering, Faculty of Mechanical Maritime
and Materials Engineering, Delft University
of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J. Mirzaali
- Department
of Biomechanical Engineering, Faculty of Mechanical Maritime and Materials
Engineering, Delft University of Technology
(TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
18
|
Zainuddin MZ, Abu Bakar AA, Adam AN, Abdullah SM, Tamchek N, Alauddin MS, Mahat MM, Wiwatcharagoses N, Alforidi A, Ghazali MIM. Mechanical and Structural Properties of Polyhydroxybutyrate as Additive in Blend Material in Additive Manufacturing for Medical Applications. Polymers (Basel) 2023; 15:polym15081849. [PMID: 37111996 PMCID: PMC10145977 DOI: 10.3390/polym15081849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Today, additive manufacturing (AM) is considered one of the vital tenets of the industry 4.0 revolution due to its high productivity, decentralized production and rapid prototyping. This work aims to study the mechanical and structural properties of polyhydroxybutyrate as an additive in blend materials and its potential in medical applications. PHB/PUA blend resins were formulated with 0 wt.%, 6 wt.%, 12 wt.% and 18 wt.% of PHB concentration. Stereolithography or an SLA 3D printing technique were used to evaluate the printability of the PHB/PUA blend resins. Additionally, from FESEM analysis, a change was observed in PUA's microstructure, with an additional number of voids spotted. Furthermore, from XRD analysis, as PHB concentration increased, the crystallinity index (CI) also increased. This indicates the brittleness properties of the materials, which correlated to the weak performance of the tensile and impact properties. Next, the effect of PHB loading concentration within PHB/PUA blends and aging duration towards the mechanical performance of tensile and impact properties was also studied by using analysis of variance (ANOVA) with a two-way method. Finally, 12 wt.% of PHB/PUA was selected to 3D print the finger splint due to its characteristics, which are compatible to be used in finger bone fracture recovery.
Collapse
Affiliation(s)
- Muhammad Zulhilmi Zainuddin
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Ahmad Adnan Abu Bakar
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Ahmad Nurhelmy Adam
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Shahino Mah Abdullah
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| | - Nizam Tamchek
- Department of Physics, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Muhammad Syafiq Alauddin
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi Mara, Shah Alam 40450, Selangor, Malaysia
| | - Nophadon Wiwatcharagoses
- Department of Electrical and Computer Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB) 1518 Pracharat 1 Road, Bangkok 10800, Thailand
| | - Ahmad Alforidi
- Electrical Engineering Department, Taibah University, Medina 42353, Saudi Arabia
| | - Mohd Ifwat Mohd Ghazali
- SMART RG, Faculty of Science and Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai 71800, Malaysia
| |
Collapse
|
19
|
Ma Y, Zhang B, Sun H, Liu D, Zhu Y, Zhu Q, Liu X. The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors. Int J Nanomedicine 2023; 18:293-305. [PMID: 36683596 PMCID: PMC9851059 DOI: 10.2147/ijn.s390500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Bone tumors, including primary bone tumors, invasive bone tumors, metastatic bone tumors, and others, are one of the most clinical difficulties in orthopedics. Once these tumors have grown and developed in the bone system, they will interact with osteocytes and other environmental cells in the bone system's microenvironment, leading to the eventual damage of the bone's physical structure. Surgical procedures for bone tumors may result in permanent defects. The dual-efficacy of tissue regeneration and tumor treatment has made biomaterial scaffolds frequently used in treating bone tumors. 3D printing technology, also known as additive manufacturing or rapid printing prototype, is the transformation of 3D computer models into physical models through deposition, curing, and material fusion of successive layers. Adjustable shape, porosity/pore size, and other mechanical properties are an advantage of 3D-printed objects, unlike natural and synthetic material with fixed qualities. Researchers have demonstrated the significant role of diverse 3D-printed biological scaffolds in the treatment for bone tumors and the regeneration of bone tissue, and that they enhanced various performance of the products. Based on the characteristics of bone tumors, this review synthesized the findings of current researchers on the application of various 3D-printed biological scaffolds including bioceramic scaffold, metal alloy scaffold and nano-scaffold, in bone tumors and discussed the advantages, disadvantages, and future application prospects of various types of 3D-printed biological scaffolds. Finally, the future development trend of 3D-printed biological scaffolds in bone tumor is summarized, providing a theoretical foundation and a larger outlook for the use of biological scaffolds in the treatment of patients with bone tumors.
Collapse
Affiliation(s)
- Yihang Ma
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Boyin Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Huifeng Sun
- Department of Respiratory Medicine, No.964 Hospital of People's Liberation Army, Changchun, People's Republic of China
| | - Dandan Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuhang Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Qingsan Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiangji Liu
- Department of Spine Surgery, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
20
|
Chesnitskiy AV, Gayduk AE, Seleznev VA, Prinz VY. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7781. [PMID: 36363368 PMCID: PMC9653604 DOI: 10.3390/ma15217781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In recent years, there has been explosive growth in the number of investigations devoted to the development and study of biomimetic micro- and nanorobots. The present review is dedicated to novel bioinspired magnetic micro- and nanodevices that can be remotely controlled by an external magnetic field. This approach to actuate micro- and nanorobots is non-invasive and absolutely harmless for living organisms in vivo and cell microsurgery, and is very promising for medicine in the near future. Particular attention has been paid to the latest advances in the rapidly developing field of designing polymer-based flexible and rigid magnetic composites and fabricating structures inspired by living micro-objects and organisms. The physical principles underlying the functioning of hybrid bio-inspired magnetic miniature robots, sensors, and actuators are considered in this review, and key practical applications and challenges are analyzed as well.
Collapse
Affiliation(s)
- Anton V. Chesnitskiy
- Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | | | | | | |
Collapse
|