1
|
Broda M, Yelle DJ, Serwańska-Leja K. Biodegradable Polymers in Veterinary Medicine-A Review. Molecules 2024; 29:883. [PMID: 38398635 PMCID: PMC10892962 DOI: 10.3390/molecules29040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
During the past two decades, tremendous progress has been made in the development of biodegradable polymeric materials for various industrial applications, including human and veterinary medicine. They are promising alternatives to commonly used non-degradable polymers to combat the global plastic waste crisis. Among biodegradable polymers used, or potentially applicable to, veterinary medicine are natural polysaccharides, such as chitin, chitosan, and cellulose as well as various polyesters, including poly(ε-caprolactone), polylactic acid, poly(lactic-co-glycolic acid), and polyhydroxyalkanoates produced by bacteria. They can be used as implants, drug carriers, or biomaterials in tissue engineering and wound management. Their use in veterinary practice depends on their biocompatibility, inertness to living tissue, mechanical resistance, and sorption characteristics. They must be designed specifically to fit their purpose, whether it be: (1) facilitating new tissue growth and allowing for controlled interactions with living cells or cell-growth factors, (2) having mechanical properties that address functionality when applied as implants, or (3) having controlled degradability to deliver drugs to their targeted location when applied as drug-delivery vehicles. This paper aims to present recent developments in the research on biodegradable polymers in veterinary medicine and highlight the challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Magdalena Broda
- Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznan, Poland
| | - Daniel J. Yelle
- Forest Biopolymers Science and Engineering, Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI 53726, USA;
| | - Katarzyna Serwańska-Leja
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland;
- Department of Sports Dietetics, Poznan University of Physical Education, 61-871 Poznan, Poland
| |
Collapse
|
2
|
Budală DG, Luchian I, Tatarciuc M, Butnaru O, Armencia AO, Virvescu DI, Scutariu MM, Rusu D. Are Local Drug Delivery Systems a Challenge in Clinical Periodontology? J Clin Med 2023; 12:4137. [PMID: 37373830 PMCID: PMC10298898 DOI: 10.3390/jcm12124137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Placing antimicrobial treatments directly in periodontal pockets is an example of the local administration of antimicrobial drugs to treat periodontitis. This method of therapy is advantageous since the drug concentration after application far surpasses the minimum inhibitory concentration (MIC) and lasts for a number of weeks. As a result, numerous local drug delivery systems (LDDSs) utilizing various antibiotics or antiseptics have been created. There is constant effort to develop novel formulations for the localized administration of periodontitis treatments, some of which have failed to show any efficacy while others show promise. Thus, future research should focus on the way LDDSs can be personalized in order to optimize future clinical protocols in periodontal therapy.
Collapse
Affiliation(s)
- Dana Gabriela Budală
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (D.G.B.)
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Monica Tatarciuc
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (D.G.B.)
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Adina Oana Armencia
- Department of Surgery and Oral Health, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Dragoș Ioan Virvescu
- Department of Fixed Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Monica Mihaela Scutariu
- Department of Implantology, Removable Prostheses, Dental Prostheses Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania; (D.G.B.)
| | - Darian Rusu
- Department of Periodontology, Faculty of Dental Medicine, “Anton Sculean” Research Center for Periodontal and Peri-Implant Diseases, “Victor Babes” University of Medicine and Pharmacy, Piața Eftimie Murgu 2, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Andrei V, Andrei S, Gal AF, Rus V, Gherman LM, Boșca BA, Niculae M, Barabas R, Cadar O, Dinte E, Muntean DM, Peștean CP, Rotar H, Boca A, Chiș A, Tăut M, Candrea S, Ilea A. Immunomodulatory Effect of Novel Electrospun Nanofibers Loaded with Doxycycline as an Adjuvant Treatment in Periodontitis. Pharmaceutics 2023; 15:pharmaceutics15020707. [PMID: 36840029 PMCID: PMC9966556 DOI: 10.3390/pharmaceutics15020707] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The immunomodulatory effect of a novel biomaterial obtained through electrospinning, based on polylactic acid (PLA) and nano-hydroxyapatite (nano-HAP), loaded with doxycycline (doxy) was evaluated in an animal model. The treatment capabilities as a local non-surgical treatment of periodontitis was investigated on the lower incisors of Wistar rats, after the induction of localized periodontitis using the ligature technique. Following the induction of the disease, the non-surgical treatment of scaling and root planing was applied, in conjunction with the application of the new material. The results of the treatment were evaluated clinically, using the tooth mobility and gingival index scores, as well as histologically. The salivary concentrations of matrix metalloproteinase 8 (MMP-8) and plasmatic concentrations of interleukin 1 (IL-1), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) were also monitored. Two weeks after the ligature application, the periodontal disease was successfully induced in rats. The application of the novel biomaterial obtained through electrospinning was proven to be more effective in improving the clinical parameters, while decreasing the salivary MMP-8 and plasmatic IL-1 and TNF-α concentrations, compared to the simple scaling and root planing. Thus, the novel electrospun biomaterial could be a strong candidate as an adjuvant to the non-surgical periodontal therapy.
Collapse
Affiliation(s)
- Vlad Andrei
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Sanda Andrei
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence:
| | - Adrian Florin Gal
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Luciana-Mădălina Gherman
- Experimental Centre of University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania
| | - Bianca Adina Boșca
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihaela Niculae
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400293 Cluj-Napoca, Romania
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cosmin Petru Peștean
- Department of Surgery and Intensive Care, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Horațiu Rotar
- Department of Cranio-Maxillofacial Surgery, Faculty of Dentistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania
| | - Antonia Boca
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Chiș
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Manuela Tăut
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Sebastian Candrea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|