1
|
Migliore JM, Hewitt P, Dingemans TJ, Simone DL, Monzel WJ. Effect of Water-Soluble Polymers on the Rheology and Microstructure of Polymer-Modified Geopolymer Glass-Ceramics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2856. [PMID: 38930225 PMCID: PMC11204717 DOI: 10.3390/ma17122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
This work explores the effects of rigid (0.1, 0.25, and 0.5 wt. %) and semi-flexible (0.5, 1.0, and 2.5 wt. %) all-aromatic polyelectrolyte reinforcements as rheological and morphological modifiers for preparing phosphate geopolymer glass-ceramic composites. Polymer-modified aluminosilicate-phosphate geopolymer resins were prepared by high-shear mixing of a metakaolin powder with 9M phosphoric acid and two all-aromatic, sulfonated polyamides. Polymer loadings between 0.5-2.5 wt. % exhibited gel-like behavior and an increase in the modulus of the geopolymer resin as a function of polymer concentration. The incorporation of a 0.5 wt. % rigid polymer resulted in a three-fold increase in viscosity relative to the control phosphate geopolymer resin. Hardening, dehydration, and crystallization of the geopolymer resins to glass-ceramics was achieved through mold casting, curing at 80 °C for 24 h, and a final heat treatment up to 260 °C. Scanning electron microscopy revealed a decrease in microstructure porosity in the range of 0.78 μm to 0.31 μm for geopolymer plaques containing loadings of 0.5 wt. % rigid polymer. Nano-porosity values of the composites were measured between 10-40 nm using nitrogen adsorption (Brunauer-Emmett-Teller method) and transmission electron microscopy. Nanoindentation studies revealed geopolymer composites with Young's modulus values of 15-24 GPa and hardness values of 1-2 GPa, suggesting an increase in modulus and hardness with polymer incorporation. Additional structural and chemical analyses were performed via thermal gravimetric analysis, Fourier transform infrared radiation, X-ray diffraction, and energy dispersive spectroscopy. This work provides a fundamental understanding of the processing, microstructure, and mechanical behavior of water-soluble, high-performance polyelectrolyte-reinforced geopolymer composites.
Collapse
Affiliation(s)
- John M. Migliore
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.M.M.); (T.J.D.)
- Materials and Manufacturing Directorate, Air Force Research Laboratory, AFRL/RXNP, Dayton, OH 45324, USA; (P.H.); (D.L.S.)
- UES, Inc. A BlueHalo Company, Dayton, OH 45432, USA
| | - Patrick Hewitt
- Materials and Manufacturing Directorate, Air Force Research Laboratory, AFRL/RXNP, Dayton, OH 45324, USA; (P.H.); (D.L.S.)
- UES, Inc. A BlueHalo Company, Dayton, OH 45432, USA
| | - Theo J. Dingemans
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.M.M.); (T.J.D.)
| | - Davide L. Simone
- Materials and Manufacturing Directorate, Air Force Research Laboratory, AFRL/RXNP, Dayton, OH 45324, USA; (P.H.); (D.L.S.)
| | - William Jacob Monzel
- Materials and Manufacturing Directorate, Air Force Research Laboratory, AFRL/RXNP, Dayton, OH 45324, USA; (P.H.); (D.L.S.)
| |
Collapse
|
2
|
Hossain KMA, Sood D. The Strength and Fracture Characteristics of One-Part Strain-Hardening Green Alkali-Activated Engineered Composites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5077. [PMID: 37512351 PMCID: PMC10384729 DOI: 10.3390/ma16145077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Alkali-activated engineered composites (AAECs) are cement-free composites developed using alkali activation technology, which exhibit strain hardening and multiple micro-cracking like conventional engineered cementitious composites (ECCs). Such AAECs are developed in this study by incorporating 2% v/v polyvinyl alcohol (PVA) fibers into alkali-activated mortars (AAMs) produced using binary/ternary combinations of fly ash class C (FA-C), fly ash class F (FA-F), and ground-granulated blast furnace slag (GGBFS) with powder-form alkaline reagents and silica sand through a one-part mixing method under ambient curing conditions. The mechanical and microstructural characteristics of eight AAECs are investigated to characterize their strain-hardening performance based on existing (stress and energy indices) and newly developed tensile/flexural ductility indices. The binary (FA-C + GGBFS) AAECs obtained higher compressive strengths (between 48 MPa and 52 MPa) and ultrasonic pulse velocities (between 3358 m/s and 3947 m/s) than their ternary (FA-C + FA-F + GGBFS) counterparts. The ternary AAECs obtained a higher fracture energy than their binary counterparts. The AAECs incorporating reagent 2 (Ca(OH)2: Na2SO4 = 2.5:1) obtained a greater fracture energy and compressive strengths than their counterparts with reagent 1 (Ca(OH)2: Na2SiO3.5H2O = 1:2.5), due to additional C-S-H gel formation, which increased their energy absorption for crack propagation through superior multiple-cracking behavior. A lower fracture and crack-tip toughness facilitated the development of enhanced flexural strength characteristics with higher flexural strengths (ranging from 5.3 MPa to 11.3 MPa) and a higher energy ductility of the binary AAMs compared to their ternary counterparts. The tensile stress relaxation process was relatively gradual in the binary AAECs, owing to the formation of a more uniform combination of reaction products (C-S-H/C-A-S-H) rather than a blend of amorphous (N-C-A-S-H/N-A-S-H) and crystalline (C-A-S-H/C-S-H) binding phases in the case of the ternary AAECs. All the AAECs demonstrated tensile strain-hardening characteristics at 28 days, with significant improvements from 28% to 100% in the maximum bridging stresses for mixes incorporating 40% to 45% GGBFS at 365 days. This study confirmed the viability of producing green cement-free strain-hardening alkali-activated composites with powder-form reagents, with satisfactory mechanical characteristics under ambient conditions.
Collapse
Affiliation(s)
| | - Dhruv Sood
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
3
|
Drabczyk A, Kudłacik-Kramarczyk S, Korniejenko K, Figiela B, Furtos G. Review of Geopolymer Nanocomposites: Novel Materials for Sustainable Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093478. [PMID: 37176360 PMCID: PMC10179758 DOI: 10.3390/ma16093478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The demand for geopolymer materials is constantly growing. This, in turn, translates into an increasing number of studies aimed at developing new approaches to the methodology of geopolymer synthesis. The range of potential applications of geopolymers can be increased by improving the properties of the components. Future directions of studies on geopolymer materials aim at developing geopolymers showing excellent mechanical properties but also demonstrating significant improvement in thermal, magnetic, or sorption characteristics. Additionally, the current efforts focus not only on the materials' properties but also on obtaining them as a result of environment-friendly approaches performed in line with circular economy assumptions. Scientists look for smart and economical solutions such that a small amount of the modifier will translate into a significant improvement in functional properties. Thus, special attention is paid to the application of nanomaterials. This article presents selected nanoparticles incorporated into geopolymer matrices, including carbon nanotubes, graphene, nanosilica, and titanium dioxide. The review was prepared employing scientific databases, with particular attention given to studies on geopolymer nanocomposites. The purpose of this review article is to discuss geopolymer nanocomposites in the context of a sustainable development approach. Importantly, the main focus is on the influence of these nanomaterials on the physicochemical properties of geopolymer nanocomposites. Such a combination of geopolymer technology and nanotechnology seems to be promising in terms of preparation of nanocomposites with a variety of potential uses.
Collapse
Affiliation(s)
- Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Cracow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Cracow, Poland
| | - Kinga Korniejenko
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Cracow, Poland
| | - Beata Figiela
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Cracow, Poland
| | - Gabriel Furtos
- "Raluca Ripan" Institute for Research in Chemistry, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Shi X, Wang X, Wang Q, Zhang T, Yang F, Xu Y, Zhan J. Experimental Analysis and Establishment of Strength Attenuation Model of POM Fiber Reinforced Geopolymeric Recycled Concrete under Freeze-Thaw Cycles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041699. [PMID: 36837328 PMCID: PMC9965534 DOI: 10.3390/ma16041699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 06/12/2023]
Abstract
Geopolymeric recycled concrete (GRC) is a new low-carbon building material that uses both construction and industrial solid waste to replace natural aggregate and cement. GRC is similar to geopolymeric concrete (GPC) in that it has good mechanical properties but needs to be improved in terms of frost resistance. Previous studies have shown that polyoxymethylene fiber (POM fiber) can improve the shrinkage and durability of concrete and is superior to other commonly used fibers. Therefore, this paper explores adding POM fiber to GRC to improve its frost resistance. In this paper, the influence of different volumes and lengths of POM fiber on the frost resistance of geopolymeric recycled concrete (PRGRC) is studied. By measuring the changes in mass loss rate, relative dynamic elastic modulus, and compressive strength of PRGRC under different cycles, the improvement effect of POM fiber on the freeze-thaw damage of GRC is analyzed, and the strength attenuation model of PRGRC is established. The results show that the increase in POM fiber content can effectively slow down the mass loss of PRGRC in the freeze-thaw cycles, the reduction rate of relative dynamic elastic modulus, and the reduction rate of compressive strength. This shows that POM fiber can effectively improve the frost resistance of PRGRC, and the effect of 6 mm POM fiber on the freeze-thaw damage of PRGRC is better than 12 mm POM fiber. According to the test results, the existing strength attenuation model is further modified, the attenuation model of PRGRC compressive strength under the freeze-thaw cycle is obtained, and the model fitting effect is good. The strengthening mechanism of POM fiber is explained by the structural relationship between POM fiber and concrete matrix in the SEM micrograph of PRGRC. The research results provide a scientific basis for the applicability of POM fiber in geopolymeric cementitious materials and improving the frost resistance of PRGRC.
Collapse
Affiliation(s)
- Xiaoshuang Shi
- Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Xiaoqi Wang
- Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Qingyuan Wang
- Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China
- CSCEC Southwest Consulting Co., Ltd., Chengdu 610095, China
| | - Tao Zhang
- Key Laboratory of Deep Underground Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Fuhua Yang
- CSCEC Southwest Consulting Co., Ltd., Chengdu 610095, China
| | - Yufei Xu
- Southwest Construction Engineering Co., Ltd., China Construction Eighth Engineering Division Co., Ltd., Chengdu 610041, China
| | - Jinsheng Zhan
- Southwest Construction Engineering Co., Ltd., China Construction Eighth Engineering Division Co., Ltd., Chengdu 610041, China
| |
Collapse
|
5
|
Amin M, Agwa IS, Mashaan N, Mahmood S, Abd-Elrahman MH. Investigation of the Physical Mechanical Properties and Durability of Sustainable Ultra-High Performance Concrete with Recycled Waste Glass. SUSTAINABILITY 2023; 15:3085. [DOI: 10.3390/su15043085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Construction material sustainability and waste reuse have emerged as significant environmental issues. Concrete is widely used in the building and engineering fields. Ultra-high performance concrete (UHPC), which has remarkably high mechanical properties, has become one of the most common concrete varieties in recent years. As a result, substantial amounts of Portland cement (PC) are frequently used, raising the initial cost of UHPC and restricting its broad use in structural applications. A significant amount of CO2 is produced and a large amount of natural resources are consumed in its production. To make UHPC production more eco-friendly and economically viable, it is advised that the PC in concrete preparations be replaced with different additives and that the recycled aggregates from various sources be substituted for natural aggregates. This research aims to develop an environmentally friendly and cost-effective UHPC by using glass waste (GW) of various sizes as an alternative to PC with replacement ratios of 0%, 10%, 20%, 30%, 40%, and 50% utilizing glass powder (GP). Fine aggregate “sand (S)” is also replaced by glass particles (G) with replacement ratios of 0%, 50%, and 100%. To accomplish this, 18 mixes, separated into three groups, are made and examined experimentally. Slump flow, mechanical properties, water permeability, and microstructural characteristics are all studied. According to the results, increasing the S replacement ratio with G improved workability. Furthermore, the ideal replacement ratios for replacing PC with GP and S with G to achieve high mechanical properties were 20% and 0%, respectively. Increasing the replacement rate of GP in place of PC at a fixed ratio of G to S resulted in a significant decrease in water permeability values. Finally, a microstructural analysis confirms the experimental findings. In addition, PC100-S100 was the best mix compared to PC100-S50 G50 and PC100-G100.
Collapse
Affiliation(s)
- Mohamed Amin
- Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University, Suez 43721, Egypt
- Civil Engineering Department, Mansoura High Institute for Engineering and Technology, Mansoura 35516, Egypt
| | - Ibrahim Saad Agwa
- Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University, Suez 43721, Egypt
| | - Nuha Mashaan
- Department of Civil Engineering, School of Civil and Mechanical Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Shaker Mahmood
- Department of Civil Engineering, College of Engineering, University of Duhok, Duhok 42001, Iraq
- Department of Civil Engineering, College of Engineering, Nawroz University, Duhok 42001, Iraq
| | - Mahmoud H. Abd-Elrahman
- Civil Engineering Department, El-Arish High Institute for Engineering and Technology, EL-Arish 45511, Egypt
| |
Collapse
|