Badea GE, Fodor A, Petrehele AIG, Maior I, Toderaș M, Morgovan CM. Evaluation of Phosphopolyoxometalates with Mixed Addenda (Mo, W, V) as Corrosion Inhibitors for Steels.
MATERIALS (BASEL, SWITZERLAND) 2023;
16:7600. [PMID:
38138742 PMCID:
PMC10745015 DOI:
10.3390/ma16247600]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Nowadays, choosing a corrosion inhibitor is not only based on efficiency, but must also consider the toxicity of the compound, the impact on the environment, and, obviously, the regulations in the field. In the last two decades, a special class of substances has begun to be studied, namely polyoxometalates (POMs). Their electronic properties and redox characteristics make the polyoxometalates potential candidates to be used in many electrochemical processes, and as potential corrosion inhibitors. Electrochemical methods such as a Tafel extrapolation plot, chronopotentiometry, or gravimetry have been used to establish the capacity of corrosion inhibition of S235 and SS304 steels in the presence of phosphovanadomolibdate acid (@PMoV) and phosphovanadotungstate acid (@PWV) in 0.5 M sulphuric acid solution. The inhibition efficiency for S235 steel is about 90.6% for @PMoV, and 69.5% for @PWV after 24 h of immersion. In the case of SS304 steel, polyoxometalates have similar effects: the inhibition degree, as a function of Flade potential, is 4.66 for @PMoV; better than 3.26 for @PWV, with both proving the passivant effect.
Collapse